Skip to main content
Log in

Crystallization behaviors and mechanical properties of carbon fiber-reinforced polypropylene composites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this work, carbon fiber (CF)-reinforced polypropylene (PP) composites were prepared by melt processing with maleic anhydride-grafted polypropylene as compatibilizer. The mechanical properties and crystallization behaviors of the resulting composites were investigated detailedly. The interfacial compatibility of CRP composites was fine and CF dispersed in PP matrix homogeneously. CF played a nucleation agent for the crystallization of PP. The crystallization temperature increased with increasing CF content. Carbon fibers could act as the heterogeneous nucleation agent for PP, which would decrease the activation energy of crystallization, shorten the crystallization time and raise the crystallization rate dramatically. The original spherulite morphology of neat PP was also destroyed by CF. CF exhibited obvious reinforcing effects on PP matrix and improved the mechanical properties of PP materials. The tensile strength and flexural strength were increased over 100% with 20 mass% CF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Feng J, Zhou H, Wang X, Mi J. Theory of crystals and interfaces in polyethylene and isotactic polypropylene. J Phys Chem C. 2016;120:8630–9.

    Article  CAS  Google Scholar 

  2. Kersch M, Schmidt H-W, Altstädt V. Influence of different beta-nucleating agents on the morphology of isotactic polypropylene and their toughening effectiveness. Polymer. 2016;98:320–6.

    Article  CAS  Google Scholar 

  3. Wang K, Bahlouli N, Addiego F, Ahzi S. Elastic and yield behaviors of recycled polypropylene-based composites: experimental and modeling study. Compos Part B Eng. 2016;99:132–53.

    Article  Google Scholar 

  4. Lin Z, Cao L, Guan Z, Lin H, Chongming D, Wang Y, Gaosun W, Li W. Grafting polypropylene and treatment of calcium carbonate to improve structure and properties of polypropylene composites. J Therm Anal Calorim. 2014;117:65–772.

    Article  Google Scholar 

  5. Chen S, Wang X, Ma X, Wang K. Morphology and properties of polypropylene/nano-CaCO3 composites prepared by supercritical carbon dioxide-assisted extrusion. J Mater Sci. 2016;51:708–18.

    Article  CAS  Google Scholar 

  6. Majka TM, Bartyzel O, Raftopoulos KN, Pagacz J, Leszczyńska A, Pielichowski K. Recycling of polypropylene/montmorillonite nanocomposites by pyrolysis. J Anal Appl Pyrol. 2016;119:1–7.

    Article  CAS  Google Scholar 

  7. Pedrazzoli D, Pegoretti A, Kalaitzidou K. Interfacial interactions in silica-reinforced polypropylene nanocomposites and their impact on the mechanical properties. Polym Compos. 2016;37:2018–26.

    Article  CAS  Google Scholar 

  8. Fukuyama Y, Senda M, Kawai T, Kuroda S, Toyonaga M, Taniike T, Terano M. The effect of the addition of polypropylene-grafted SiO2 nanoparticle on the thermal conductivity of isotactic polypropylene. J Therm Anal Calorim. 2014;117:1397–405.

    Article  CAS  Google Scholar 

  9. Dou Q, Duan J. Melting and crystallization behaviors, morphology, and mechanical properties of β-polypropylene/polypropylene-graft-maleic anhydride/calcium sulfate whisker composites. Polym Compos. 2016;37:2121–32.

    Article  CAS  Google Scholar 

  10. Cabrera A, Sharma P, Ayala M, Rubio-Perez L, Amézquita-Valencia M. Fabrication of exfoliated graphene-based polypropylene nanocomposites with enhanced mechanical and thermal properties. Polymer. 2011;52:4001–10.

    Article  Google Scholar 

  11. Hu D, Chen J, Zhao L, Liu T. Melting and non-isothermal crystallization behaviors of polypropylene and polypropylene/montmorillonite nanocomposites under pressurized carbon dioxide. Thermochim Acta. 2015;617:65–75.

    Article  CAS  Google Scholar 

  12. Abadchi MR, Jalali-Arani A. Crystallization and melting behavior of polypropylene (PP) in (vulcanized nanoscale polybutadiene rubber powder/PP) polymer-nanocomposites. Thermochim Acta. 2015;617:120–8.

    Article  Google Scholar 

  13. Ameli A, Jung PU, Park CB. Electrical properties and electromagnetic interference shielding effectiveness of polypropylene/carbon fiber composite foams. Carbon. 2013;60:379–91.

    Article  CAS  Google Scholar 

  14. Xu S, Akchurin A, Liu T, Wood W, Tangpong XW, Akhatov I, Zhong W. Thermal properties of carbon nanofiber reinforced High-Density polyethylene nanocomposites. J Compos Mater. 2015;49:795–805.

    Article  CAS  Google Scholar 

  15. Li J. The research on the interfacial compatibility of polypropylene composite filled with surface treated carbon fiber. Appl Surf Sci. 2009;255:8682–4.

    Article  CAS  Google Scholar 

  16. Savasa LA, Tayfun U, Dogan M. The use of polyethylene copolymers as compatibilizers in carbon fiber reinforced high density polyethylene composites. Compos Part B Eng. 2016;99:188–95.

    Article  Google Scholar 

  17. Shen L, Wang FQ, Yang H, Meng QR. The combined effects of carbon black and carbon fiber on the electrical properties of composites based on polyethylene or polyethylene/polypropylene blend. Polym Test. 2011;30:442–8.

    Article  CAS  Google Scholar 

  18. Molazemhosseini A, Tourani H, Naimi-Jamal MR. Nanoindentation and nanoscratching responses of PEEK based hybrid composites reinforced with short carbon fibers and nano-silica. Polym Test. 2013;32:525–34.

    Article  CAS  Google Scholar 

  19. Rezaei F, Yunus R. Development of short-carbon-fiber-reinforced polypropylene composite for car bonnet. Polym Plast Technol Eng. 2008;47:351–7.

    Article  CAS  Google Scholar 

  20. Xu Z, Chen L, Huang Y, Li J, Wu X, Li X, Jiao Y. Wettability of carbon fibers modified by acrylic acid and interface properties of carbon fiber/epoxy. Eur Polym J. 2008;44:494–503.

    Article  CAS  Google Scholar 

  21. Fu SY, Lauke B, Mäder E, Yue CY, Hu X. Tensile properties of short-glass-fiber-and short-carbon-fiber-reinforced polypropylene composites. Compos Part A Appl Sci Manuf. 2000;31:1117–25.

    Article  Google Scholar 

  22. Rezaei F, Yunus R, Ibrahim NA. Effect of fiber length on thermomechanical properties of short carbon fiber reinforced polypropylene composites. Mater Des. 2009;30:260–3.

    Article  CAS  Google Scholar 

  23. Xiang G, Huafeng T, Qian L, Yan L, Aimin X. Effect of compatilizer on rheological and mechanical properties of polypropylene/carbon fiber composite. Plast. 2016;45:4–6.

    Google Scholar 

  24. Sperling LH. Introduction to physical polymer science. New York: Wiley; 2005.

    Book  Google Scholar 

  25. Shi J, Yang X, Wang X, Lu L. Non-isothermal crystallization kinetics of nylon 6/attapulgite nanocomposites. Polym Test. 2010;29:596–602.

    Article  CAS  Google Scholar 

  26. Lin F, Tian H, Jia Q, Xiang A, Li Y, Pan W, Xu H. Non-isothermal crystallization behaviors of polyvinyl alcohol/hydroxyethyl cellulose blend films. J Polym Environ. 2013;21:343–9.

    Article  CAS  Google Scholar 

  27. Lorenzo AT, Arnal ML, Albuerne J, Müller AJ. DSC isothermal polymer crystallization kinetics measurements and the use of the Avrami equation to fit the data: guidelines to avoid common problems. Polym Test. 2007;26:222–31.

    Article  CAS  Google Scholar 

  28. Fu SY, Lauke B, Mader E, Hu X, Yue CY. Tensile properties of short-glass-fiber and short-carbon-fiber-reinforced polypropylene composites. Compos Part A: Appl Sci Manuf. 2000;31:1117–25.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51373004), Innovation Ability Promotion Plan of Beijing Municipal Commission of Education (PXM2013_014213_000097), Beijing Top Young Innovative Talents Program (2014000026833ZK13) and Open Funding of State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University (LK1406).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aimin Xiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, H., Zhang, S., Ge, X. et al. Crystallization behaviors and mechanical properties of carbon fiber-reinforced polypropylene composites. J Therm Anal Calorim 128, 1495–1504 (2017). https://doi.org/10.1007/s10973-016-5996-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5996-3

Keywords

Navigation