Skip to main content
Log in

Nonisothermal crystallization behavior and molecular dynamics of poly(lactic acid) plasticized with jojoba oil

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Poly(lactic acid) (PLA) containing different contents of jojoba oil (3 and 7 mass%; namely PLA-3JO and PLA-7JO), as natural plasticizer, was prepared via melt compounding. The nonisothermal crystallization behavior of PLA in the presence of jojoba oil was investigated from the glassy state. The obtained results revealed that the rate of crystallization and degree of crystallinity increased with increasing the content of jojoba. The nonisothermal crystallization kinetics was analyzed by the Avrami–Jeziorny model. Avrami exponent (n) of the PLA, PLA-3JO and PLA-7JO was found to be 4.08, 3.28 and 3.09, respectively, suggesting that the nonisothermal cold crystallizations of the plasticized PLA follow a heterogeneous nucleation and three-dimensional spherulitic growth, as occurring in the neat PLA. Furthermore, the activation energy of nonisothermal crystallization process (ΔE a) was calculated as a function of blend composition based on the Kissinger equation. It was found that the ΔE a of PLA insignificantly changed in the presence of jojoba oil. The dielectric properties of totally amorphous and crystallized plasticized PLA were also investigated for the α-relaxation process as a function of the temperature and frequency. The α-relaxation process was analyzed with Havriliak–Negami and Vogel–Fulcher–Tammann models, and fitting parameters with their evolution were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Chandra R, Rustgi R. Biodegradable polymers. Prog Polym Sci. 1998;23(7):1273–335.

    Article  CAS  Google Scholar 

  2. Warwel S, Brüse F, Demes C, Kunz M, gen Klaas MR. Polymers and surfactants on the basis of renewable resources. Chemosphere. 2001;3(1):39–48.

    Article  Google Scholar 

  3. Avérous L. Polylactic acid: synthesis, properties and applications. In: Belgacem MN, Gandini A, editors. Monomers, polymers and composites from renewable resources. Amsterdam: Elsevier; 2008. p. 433–50.

    Chapter  Google Scholar 

  4. Hausberger AG, DeLuca PP. Characterization of biodegradable poly(d,l-lactide-co-glycolide) polymers and microspheres. J Pharm Biomed Anal. 1995;13(6):747–60.

    Article  CAS  Google Scholar 

  5. Sinclair R. The case for polylactic acid as a commodity packaging plastic. J Macromol Sci Part A Pure Appl Chem. 1996;33(5):585–97.

    Article  Google Scholar 

  6. Okada M. Chemical syntheses of biodegradable polymers. Prog Polym Sci. 2002;27(1):87–133.

    Article  CAS  Google Scholar 

  7. Albertsson A-C, Varma IK. Aliphatic polyesters: synthesis, properties and applications. Degradable aliphatic polyesters. Berlin: Springer; 2002. p. 1–40.

    Book  Google Scholar 

  8. Baiardo M, Frisoni G, Scandola M, Rimelen M, Lips D, Ruffieux K, et al. Thermal and mechanical properties of plasticized poly(l-lactic acid). J Appl Polym Sci. 2003;90(7):1731–8.

    Article  CAS  Google Scholar 

  9. Kulinski Z, Piorkowska E. Crystallization, structure and properties of plasticized poly(l-lactide). Polymer. 2005;46(23):10290–300.

    Article  CAS  Google Scholar 

  10. Murariu M, Da Silva FerreiraA, Alexandre M, Dubois P. Polylactide (PLA) designed with desired end-use properties: 1. PLA compositions with low molecular weight ester-like plasticizers and related performances. Polym Adv Technol. 2008;19(6):636–46.

    Article  CAS  Google Scholar 

  11. Hassouna F, Raquez J-M, Addiego F, Dubois P, Toniazzo V, Ruch D. New approach on the development of plasticized polylactide (PLA): grafting of poly(ethylene glycol)(PEG) via reactive extrusion. Eur Polym J. 2011;47(11):2134–44.

    Article  CAS  Google Scholar 

  12. Vieira MGA, da Silva MA, dos Santos LO, Beppu MM. Natural-based plasticizers and biopolymer films: a review. Eur Polym J. 2011;47(3):254–63.

    Article  CAS  Google Scholar 

  13. Sears JK, Darby JR. The technology of plasticizers. New York: Wiley; 1982.

    Google Scholar 

  14. Cakar F, Yazici O, Cankurtaran O, Karaman F. A study on compatibility of polymer blends of poly(2,6-dimethyl-1,4-phenyleneoxide)/poly(ether imide). Optoelectron Adv Mater. 2012;6:1153–6.

    CAS  Google Scholar 

  15. Elsawy M, Christiansen JdC, Sanporean C-G. Investigation of jojoba oil-wax as a plasticizer for poly(lactic acid). Optoelectron Adv Mater. 2014;8(1–2):109–14.

    CAS  Google Scholar 

  16. Kalb B, Pennings AJ. General crystallization behaviour of poly(l-lactic acid). Polymer. 1980;21(6):607–12.

    Article  CAS  Google Scholar 

  17. Urbanovici E, Schneider H, Brizzolara D, Cantow H. Isothermal melt crystallization kinetics of poly(l-lactic acid). J Therm Anal Calorim. 1996;47(4):931–9.

    Article  CAS  Google Scholar 

  18. Tabi T, Sajó I, Szabó F, Luyt A, Kovács J. Crystalline structure of annealed polylactic acid and its relation to processing. Express Polym Lett. 2010;4(10):659–68.

    Article  CAS  Google Scholar 

  19. Badrinarayanan P, Dowdy KB, Kessler MR. A comparison of crystallization behavior for melt and cold crystallized poly(l-lactide) using rapid scanning rate calorimetry. Polymer. 2010;51(20):4611–8.

    Article  CAS  Google Scholar 

  20. Vasanthakumari R, Pennings A. Crystallization kinetics of poly(l-lactic acid). Polymer. 1983;24(2):175–8.

    Article  CAS  Google Scholar 

  21. Yasuniwa M, Tsubakihara S, Sugimoto Y, Nakafuku C. Thermal analysis of the double-melting behavior of poly(l-lactic acid). J Polym Sci B Polym Phys. 2004;42(1):25–32.

    Article  CAS  Google Scholar 

  22. Di Lorenzo ML. Calorimetric analysis of the multiple melting behavior of poly(l-lactic acid). J Appl Polym Sci. 2006;100(4):3145–51.

    Article  Google Scholar 

  23. Tsuji H, Ikada Y. Properties and morphologies of poly(l-lactide): 1. Annealing condition effects on properties and morphologies of poly(l-lactide). Polymer. 1995;36(14):2709–16.

    Article  CAS  Google Scholar 

  24. Migliaresi C, Cohn D, De Lollis A, Fambri L. Dynamic mechanical and calorimetric analysis of compression-molded PLLA of different molecular weights: effect of thermal treatments. J Appl Polym Sci. 1991;43(1):83–95.

    Article  CAS  Google Scholar 

  25. Pantani R, De Santis F, Sorrentino A, De Maio F, Titomanlio G. Crystallization kinetics of virgin and processed poly(lactic acid). Polym Degrad Stab. 2010;95(7):1148–59.

    Article  CAS  Google Scholar 

  26. Ljungberg N, Wesslén B. Preparation and properties of plasticized poly(lactic acid) films. Biomacromolecules. 2005;6(3):1789–96.

    Article  CAS  Google Scholar 

  27. Ke T, Sun X. Melting behavior and crystallization kinetics of starch and poly(lactic acid) composites. J Appl Polym Sci. 2003;89(5):1203–10.

    Article  CAS  Google Scholar 

  28. Gumus S, Ozkoc G, Aytac A. Plasticized and unplasticized PLA/organoclay nanocomposites: Short-and long-term thermal properties, morphology, and nonisothermal crystallization behavior. J Appl Polym Sci. 2012;123(5):2837–48.

    Article  CAS  Google Scholar 

  29. Battegazzore D, Bocchini S, Frache A. Crystallization kinetics of poly(lactic acid)-talc composites. Express Polym Lett. 2011;5(10):849–58.

    Article  CAS  Google Scholar 

  30. Li H, Huneault MA. Effect of nucleation and plasticization on the crystallization of poly(lactic acid). Polymer. 2007;48(23):6855–66.

    Article  CAS  Google Scholar 

  31. Kolmogorov AN. On the statistical theory of the crystallization of metals. Bull Acad Sci USSR Math Ser. 1937;1:355–9.

    Google Scholar 

  32. Johnson WA, Mehl RF. Reaction kinetics in processes of nucleation and growth. Trans Aime. 1939;135(8):396–415.

    Google Scholar 

  33. Avrami M. Kinetics of phase change. I General theory. J Chem Phys. 1939;7(12):1103–12.

    Article  CAS  Google Scholar 

  34. Avrami M. Kinetics of phase change. II transformation–time relations for random distribution of nuclei. J Chem Phys. 1940;8(2):212–24.

    Article  CAS  Google Scholar 

  35. Tobin MC. Theory of phase transition kinetics with growth site impingement. I. Homogeneous nucleation. J Polym Sci Part B Polym Phys. 1974;12(2):399–406.

    Article  CAS  Google Scholar 

  36. Tobin MC. The theory of phase transition kinetics with growth site impingement. II. Heterogeneous nucleation. J Polym Sci Part B Polym Phys. 1976;14(12):2253–7.

    Article  CAS  Google Scholar 

  37. Malkin AY, Beghishev V, Keapin IA, Bolgov S. General treatment of polymer crystallization kinetics—part 1. A new macrokinetic equation and its experimental verification. Polym Eng Sci. 1984;24(18):1396–401.

    Article  CAS  Google Scholar 

  38. Saiter A, Delpouve N, Dargent E, Saiter J. Cooperative rearranging region size determination by temperature modulated DSC in semi-crystalline poly(l-lactide acid). Eur Polym J. 2007;43(11):4675–82.

    Article  CAS  Google Scholar 

  39. Magoń A, Pyda M. Study of crystalline and amorphous phases of biodegradable poly(lactic acid) by advanced thermal analysis. Polymer. 2009;50(16):3967–73.

    Article  Google Scholar 

  40. Di Lorenzo ML, Cocca M, Malinconico M. Crystal polymorphism of poly(l-lactic acid) and its influence on thermal properties. Thermochim Acta. 2011;522(1):110–7.

    Article  Google Scholar 

  41. Delpouve N, Saiter A, Dargent E. Cooperativity length evolution during crystallization of poly(lactic acid). Eur Polym J. 2011;47(12):2414–23.

    Article  CAS  Google Scholar 

  42. Henricks J, Boyum M, Zheng W. Crystallization kinetics and structure evolution of a polylactic acid during melt and cold crystallization. J Therm Anal Calorim. 2015;120(3):1765–74.

    Article  CAS  Google Scholar 

  43. Kanchanasopa M, Runt J. Broadband dielectric investigation of amorphous and semicrystalline l-lactide/meso-lactide copolymers. Macromolecules. 2004;37(3):863–71.

    Article  CAS  Google Scholar 

  44. Brás AR, Viciosa MT, Wang Y, Dionísio M, Mano JF. Crystallization of poly(l-lactic acid) probed with dielectric relaxation spectroscopy. Macromolecules. 2006;39(19):6513–20.

    Article  Google Scholar 

  45. Wurm A, Soliman R, Schick C. Early stages of polymer crystallization—a dielectric study. Polymer. 2003;44(24):7467–76.

    Article  CAS  Google Scholar 

  46. Ren J, Adachi K. Dielectric relaxation in blends of amorphous poly(dl-lactic acid) and semicrystalline poly(l-lactic acid). Macromolecules. 2003;36(14):5180–6.

    Article  CAS  Google Scholar 

  47. Dionísio M, Viciosa MT, Wang Y, Mano JF. Glass transition dynamics of poly(l-lactic acid) during isothermal crystallisation monitored by real-time dielectric relaxation spectroscopy measurements. Macromol Rapid Commun. 2005;26(17):1423–7.

    Article  Google Scholar 

  48. Bras A, Malik P, Dionisio M, Mano J. Influence of crystallinity in molecular motions of poly(l-lactic acid) investigated by dielectric relaxation spectroscopy. Macromolecules. 2008;41(17):6419–30.

    Article  CAS  Google Scholar 

  49. Soccio M, Nogales A, Lotti N, Munari A, Ezquerra TA. The β relaxation as a probe to follow real-time polymer crystallization in model aliphatic polyesters. Polymer. 2007;48(16):4742–50.

    Article  CAS  Google Scholar 

  50. Ling X, Spruiell JE. Analysis of the complex thermal behavior of poly(l-lactic acid) film. I. Samples crystallized from the glassy state. J Polym Sci B Polym Phys. 2006;44(22):3200–14.

    Article  CAS  Google Scholar 

  51. Abe H, Harigaya M, Kikkawa Y, Tsuge T, Doi Y. Crystal growth and solid-state structure of poly(lactide) stereocopolymers. Biomacromolecules. 2005;6(1):457–67.

    Article  CAS  Google Scholar 

  52. Pluta M, Jeszka J, Boiteux G. Polylactide/montmorillonite nanocomposites: structure, dielectric, viscoelastic and thermal properties. Eur Polym J. 2007;43(7):2819–35.

    Article  CAS  Google Scholar 

  53. Zhang J, Tashiro K, Tsuji H, Domb AJ. Disorder-to-order phase transition and multiple melting behavior of poly(l-lactide) investigated by simultaneous measurements of WAXD and DSC. Macromolecules. 2008;41(4):1352–7.

    Article  CAS  Google Scholar 

  54. Zhang R, Zheng H, Lou X, Ma D. Crystallization characteristics of polypropylene and low ethylene content polypropylene copolymer with and without nucleating agents. J Appl Polym Sci. 1994;51(1):51–6.

    Article  CAS  Google Scholar 

  55. Wu M, Yang G, Wang M, Wang W, Zhang W-D, Feng J, et al. Nonisothermal crystallization kinetics of ZnO nanorod filled polyamide 11 composites. Mater Chem Phys. 2008;109(2):547–55.

    Article  CAS  Google Scholar 

  56. Di Lorenzo M, Silvestre C. Non-isothermal crystallization of polymers. Prog Polym Sci. 1999;24(6):917–50.

    Article  Google Scholar 

  57. Jeziorny A. Parameters characterizing the kinetics of the non-isothermal crystallization of poly(ethylene terephthalate) determined by DSC. Polymer. 1978;19(10):1142–4.

    Article  CAS  Google Scholar 

  58. Schulz E, Wunderlich B. Macromolecular physics, vol. 2 crystal nucleation, growth, annealing. New York: Academic; 1976. p. 50.

    Google Scholar 

  59. Wu TM, Chen EC. Crystallization behavior of poly(ε-caprolactone)/multiwalled carbon nanotube composites. J Polym Sci B Polym Phys. 2006;44(3):598–606.

    Article  CAS  Google Scholar 

  60. Kissinger HE. Variation of peak temperature with heating rate in differential thermal analysis. J Res Natl Inst Stand Technol. 1956;57(4):217–21.

    Article  CAS  Google Scholar 

  61. Jeszka J, Pietrzak L, Pluta M, Boiteux G. Dielectric properties of polylactides and their nanocomposites with montmorillonite. J Non-Cryst Solids. 2010;356(11):818–21.

    Article  CAS  Google Scholar 

  62. Laredo E, Grimau M, Bello A, Wu D. Molecular dynamics and crystallization precursors in polylactide and poly(lactide)/CNT biocomposites in the insulating state. Eur Polym J. 2013;49(12):4008–19.

    Article  CAS  Google Scholar 

  63. McCrum NG, Read BE, Williams G. Anelastic and dielectric effects in polymeric solids. New York: Wiley; 1967.

    Google Scholar 

  64. Mijovic J, Sy J-W. Molecular dynamics during crystallization of poly(l-lactic acid) as studied by broad-band dielectric relaxation spectroscopy. Macromolecules. 2002;35(16):6370–6.

    Article  CAS  Google Scholar 

  65. Kortaberria G, Marieta C, Jimeno A, Arruti P, Mondragon I. Crystallization of poly(l-lactid acid) monitored by dielectric relaxation spectroscopy and atomic force microscopy. J Microsc. 2006;224(3):277–89.

    Article  CAS  Google Scholar 

  66. Havriliak S, Negami S. A complex plane representation of dielectric and mechanical relaxation processes in some polymers. Polymer. 1967;8:161–210.

    Article  CAS  Google Scholar 

  67. Böttcher CJF, van Belle OC, Bordewijk P, Rip A. Theory of electric polarization. Amsterdam: Elsevier; 1978.

    Google Scholar 

  68. Tammann G, Hesse W. Die Abhängigkeit der Viscosität von der Temperatur bie unterkühlten Flüssigkeiten. Z Anorg Allg Chem. 1926;156(1):245–57.

    Article  Google Scholar 

  69. Fulcher GS. Analysis of recent measurements of the viscosity of glasses. J Am Ceram Soc. 1925;8(6):339–55.

    Article  CAS  Google Scholar 

  70. Vogel H. The law of the relation between the viscosity of liquids and the temperature. Physikalische Zeitschrift. 1921;22:645–6.

    CAS  Google Scholar 

  71. Jin X, Zhang S, Runt J. Dielectric studies of poly(ethylene oxide)/poly(styrene-co-p-hydroxystyrene) blends: influence of hydrogen bonding on the dynamics of amorphous blends. Macromolecules. 2003;36(21):8033–9.

    Article  CAS  Google Scholar 

  72. Angell CA. In: Nagai KL, Wright CB, editors. Relaxation in complex systems. Washington, DC: NRL; 1985. p. 3–12.

  73. Qin Q, McKenna GB. Correlation between dynamic fragility and glass transition temperature for different classes of glass forming liquids. J Non-Cryst Solids. 2006;352(28):2977–85.

    Article  CAS  Google Scholar 

  74. Arnoult M, Dargent E, Mano J. Mobile amorphous phase fragility in semi-crystalline polymers: comparison of PET and PLLA. Polymer. 2007;48(4):1012–9.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gamal R. Saad.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 195 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saad, G.R., Elsawy, M.A. & Aziz, M.S.A. Nonisothermal crystallization behavior and molecular dynamics of poly(lactic acid) plasticized with jojoba oil. J Therm Anal Calorim 128, 211–223 (2017). https://doi.org/10.1007/s10973-016-5910-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5910-z

Keywords

Navigation