Skip to main content
Log in

Self-nucleation and crystallization of polyvinyl alcohol

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Polyvinyl alcohol (PVA) is a hydrophilic, biodegradable, semicrystalline polymer with a wide array of commercial uses ranging from textiles and packaging to medicine. Film samples of PVA were investigated to assess crystallization and melting behavior during self-nucleation experiments and thermal degradation, using differential scanning calorimetry (DSC) and thermogravimetric (TG) analysis, respectively. TG results show that degradation occurred at temperatures in excess of 200 °C which is close to the observed peak melting temperature of 223 °C. PVA was heated to various self-nucleation temperatures, T s, within its melting range, and then cooled and reheated. Three distinct crystallization regimes were observed upon cooling, depending upon the self-nucleation temperature (T s) selected. At low values of T s, T s < 227 °C, PVA only partially melts, and upon cooling the residual crystals anneal and become more stable. At intermediate values of T s, 228 °C < T s < 234 °C, PVA was found to crystallize exclusively from self-nucleation. For T s > 235 °C, the PVA melts completely and absence of self-nucleation sites causes crystallization to occur at lower temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kane TG, Robinson WD, inventors; Polyvinyl alcohol adhesives. United States 1972.

  2. Sumi M, Suenaga J, Takenaka M, Murano I, Tanabe M, Hirai K, inventors; Cold-set adhesive compositions comprising polyvinyl alcohol for paper and paper board. United States 1984.

  3. Wolff EA, inventor; Method of making a waterproof polyvinyl alcohol coated paper. United States 1970.

  4. Han JH. Chapter 4—Antimicrobial food packaging. In: Ahvenainen R, editor. Novel food packaging techniques. Cambridge: Woodhead Publishing; 2003. p. 50–70.

    Chapter  Google Scholar 

  5. Musetti A, Paderni K, Fabbri P, Pulvirenti A, Al-Moghazy M, Fava P. Poly(vinyl alcohol)-based film potentially suitable for antimicrobial packaging applications. J Food Sci. 2014;79(4):E577–82.

    Article  CAS  Google Scholar 

  6. de Azeredo HMC. Nanocomposites for food packaging applications. Food Res Int. 2009;42(9):1240–53.

    Article  Google Scholar 

  7. Chiellini E, Corti A, D’Antone S, Solaro R. Biodegradation of poly (vinyl alcohol) based materials. Prog Polym Sci. 2003;28(6):963–1014.

    Article  CAS  Google Scholar 

  8. Huang H, Gu L, Ozaki Y. Non-isothermal crystallization and thermal transitions of a biodegradable, partially hydrolyzed poly(vinyl alcohol). Polymer. 2006;47(11):3935–45.

    Article  CAS  Google Scholar 

  9. Arvanitoyannis I, Kolokuris I, Nakayama A, Yamamoto N, Aiba S-I. Physico-chemical studies of chitosan-poly(vinyl alcohol) blends plasticized with sorbitol and sucrose. Carbohydr Polym. 1997;34(1–2):9–19.

    Article  CAS  Google Scholar 

  10. Zeng J, Aigner A, Czubayko F, Kissel T, Wendorff JH, Greiner A. Poly(vinyl alcohol) nanofibers by electrospinning as a protein delivery system and the retardation of enzyme release by additional polymer coatings. Biomacromolecules. 2005;6(3):1484–8.

    Article  CAS  Google Scholar 

  11. Kenawy E-R, Abdel-Hay FI, El-Newehy MH, Wnek GE. Controlled release of ketoprofen from electrospun poly(vinyl alcohol) nanofibers. Mater Sci Eng A. 2007;459(1–2):390–6.

    Article  Google Scholar 

  12. Khanna PK, Singh N, Charan S, Subbarao VVVS, Gokhale R, Mulik UP. Synthesis and characterization of Ag/PVA nanocomposite by chemical reduction method. Mater Chem Phys. 2005;93(1):117–21.

    Article  CAS  Google Scholar 

  13. Hong KH. Preparation and properties of electrospun poly(vinyl alcohol)/silver fiber web as wound dressings. Polym Eng Sci. 2007;47(1):43–9.

    Article  CAS  Google Scholar 

  14. Zhou Y, Yang D, Chen X, Xu Q, Lu F, Nie J. Electrospun water-soluble carboxyethyl chitosan/poly(vinyl alcohol) nanofibrous membrane as potential wound dressing for skin regeneration. Biomacromolecules. 2008;9(1):349–54.

    Article  CAS  Google Scholar 

  15. Vaidya S, Tozer KR, Chen J. An overview of embolic agents. Semin Interv Radiol. 2008;25(03):204–15.

    Article  Google Scholar 

  16. Baker MI, Walsh SP, Schwartz Z, Boyan BD. A review of polyvinyl alcohol and its uses in cartilage and orthopedic applications. J Biomed Mater Res B. 2012;100B(5):1451–7.

    Article  CAS  Google Scholar 

  17. Hyon S-H, Cha W-I, Ikada Y, Kita M, Ogura Y, Honda Y. Poly(vinyl alcohol) hydrogels as soft contact lens material. J Biomater Sci Polym E. 1994;5(5):397–406.

    Article  CAS  Google Scholar 

  18. Li CP, Vongsvivut J, She XD, Li YZ, She FH, Kong LX. New insight into non-isothermal crystallization of PVA-graphene composites. Phys Chem Chem Phys. 2014;16(40):22145–58.

    Article  CAS  Google Scholar 

  19. Li CP, Hou TT, Vongsvivut J, Li YZ, She XD, She FH, et al. Simultaneous crystallization and decomposition of PVA/MMT composites during non-isothermal process. Thermochim Acta. 2015;618:26–35.

    Article  CAS  Google Scholar 

  20. Li C, She M, She X, Dai J, Kong L. Functionalization of polyvinyl alcohol hydrogels with graphene oxide for potential dye removal. J Appl Polym Sci. 2014;131(3):39872.

  21. Li CP, Hou TT, She XD, Wei XY, She FH, Gao WM, et al. Decomposition properties of PVA/graphene composites during melting-crystallization. Polym Degrad Stab. 2015;119:178–89.

    Article  CAS  Google Scholar 

  22. Probst O, Moore EM, Resasco DE, Grady BP. Nucleation of polyvinyl alcohol crystallization by single-walled carbon nanotubes. Polymer. 2004;45(13):4437–43.

    Article  CAS  Google Scholar 

  23. Holland BJ, Hay JN. The thermal degradation of poly(vinyl alcohol). Polymer. 2001;42(16):6775–83.

    Article  CAS  Google Scholar 

  24. Endo R, Amiya S, Hikosaka M. Conditions for melt crystallization without thermal degradation and equilibrium melting temperature of atactic poly(Vinyl Alcohol). J Macromol Sci B. 2003;42(3–4):793–820.

    Article  Google Scholar 

  25. Tubbs RK. Melting point and heat of fusion of poly(vinyl alcohol). J Polym Sci Part A. 1965;3(12):4181–9.

    CAS  Google Scholar 

  26. Peppas NA, Hansen PJ. Crystallization kinetics of poly(vinyl alcohol). J Appl Polym Sci. 1982;27(12):4787–97.

    Article  CAS  Google Scholar 

  27. Peppas NA, Merrill EW. Differential scanning calorimetry of crystallized PVA hydrogels. J Appl Polym Sci. 1976;20(6):1457–65.

    Article  CAS  Google Scholar 

  28. Wunderlich B. Macromolecular physics, volume 3—crystal melting. New York: Academic Press; 1980.

    Google Scholar 

  29. Koski A, Yim K, Shivkumar S. Effect of molecular weight on fibrous PVA produced by electrospinning. Mater Lett. 2004;58(3–4):493–7.

    Article  CAS  Google Scholar 

  30. Minoo N, Tong L, Mark PS, Liming D, Xungai W. Electrospun single-walled carbon nanotube/polyvinyl alcohol composite nanofibers: structure–property relationships. Nanotechnology. 2008;19(30):305702.

    Article  Google Scholar 

  31. Azuma Y, Yoshie N, Sakurai M, Inoue Y, Chûjô R. Thermal behaviour and miscibility of poly(3-hydroxybutyrate)/poly(vinyl alcohol) blends. Polymer. 1992;33(22):4763–7.

    Article  CAS  Google Scholar 

  32. El-Zaher NA, Osiris WG. Thermal and structural properties of poly(vinyl alcohol) doped with hydroxypropyl cellulose. J Appl Polym Sci. 2005;96(5):1914–23.

    Article  CAS  Google Scholar 

  33. Guirguis OW, Moselhey MTH. Thermal and structural studies of poly (vinyl alcohol) and hydroxypropyl cellulose blends. Nat Sci. 2012;04(01):11.

    Google Scholar 

  34. Jang J, Lee DK. Plasticizer effect on the melting and crystallization behavior of polyvinyl alcohol. Polymer. 2003;44(26):8139–46.

    Article  CAS  Google Scholar 

  35. Minus ML, Chae HG, Kumar S. Single wall carbon nanotube templated oriented crystallization of poly(vinyl alcohol). Polymer. 2006;47(11):3705–10.

    Article  CAS  Google Scholar 

  36. Fillon B, Lotz B, Thierry A, Wittmann JC. Self-nucleation and enhanced nucleation of polymers—definition of a convenient calorimetric efficiency scale and evaluation of nucleating additives in isotactic polypropylene (alpha-phase). J Polym Sci Pol Phys. 1993;31(10):1395–405.

    Article  CAS  Google Scholar 

  37. Fillon B, Thierry A, Wittmann JC, Lotz B. Self-nucleation and recrystallization of polymers—isotactic polypropylene, beta-phase–beta-alpha conversion and beta-alpha-growth transitions. J Polym Sci Pol Phys. 1993;31(10):1407–24.

    Article  CAS  Google Scholar 

  38. Fillon B, Wittmann JC, Lotz B, Thierry A. Self-nucleation and recrystallization of isotactic polypropylene (alpha-phase) investigated by differential scanning calorimetry. J Polym Sci Pol Phys. 1993;31(10):1383–93.

    Article  CAS  Google Scholar 

  39. Müller AJ, Arnal ML. Thermal fractionation of polymers. Prog Polym Sci. 2005;30(5):559–603.

    Article  Google Scholar 

  40. Lorenzo AT, Arnal ML, Sánchez JJ, Müller AJ. Effect of annealing time on the self-nucleation behavior of semicrystalline polymers. J Polym Sci Pol Phys. 2006;44(12):1738–50.

    Article  CAS  Google Scholar 

  41. Mamun A, Umemoto S, Okui N, Ishihara N. Self-seeding effect on primary nucleation of isotactic polystyrene. Macromolecules. 2007;40(17):6296–303.

    Article  CAS  Google Scholar 

  42. Arandia I, Mugica A, Zubitur M, Arbe A, Liu G, Wang D, et al. How composition determines the properties of isodimorphic poly(butylene succinate-ran-butylene azelate) random biobased copolymers: from single to double crystalline random copolymers. Macromolecules. 2015;48(1):43–57.

    Article  CAS  Google Scholar 

  43. Jalali A, Huneault MA, Elkoun S. Effect of thermal history on nucleation and crystallization of poly(lactic acid). J Mater Sci. 2016;51(16):7768–79.

    Article  CAS  Google Scholar 

  44. Ren MQ, Chen XJ, Sang Y, Alamo RG. Effect of heterogeneous short chain branching distribution on acceleration or retardation of the rate of crystallization from melts of ethylene copolymers synthesized with ziegler-natta catalysts. Macromol Symp. 2015;356(1):131–41.

    Article  CAS  Google Scholar 

  45. Chen XJ, Mamun A, Alamo RG. Effect of level of crystallinity on melt memory above the equilibrium melting temperature in a random ethylene 1-butene copolymer. Macromol Chem Phys. 2015;216(11):1220–6.

    Article  CAS  Google Scholar 

  46. Horváth Z, Menyhárd A, Doshev P, Gahleitner M, Varga J, Tranninger C, et al. Chain regularity of isotactic polypropylene determined by different thermal fractionation methods. J Therm Anal Calorim. 2014;118(1):235–45.

    Article  Google Scholar 

  47. Reid BO, Vadlamudi M, Mamun A, Janani H, Gao HH, Hu WB, et al. Strong memory effect of crystallization above the equilibrium melting point of random copolymers. Macromolecules. 2013;46(16):6485–97.

    Article  CAS  Google Scholar 

  48. Chau J, Teh J. Successive self-nucleation and annealing in the solvated state of ethylene copolymers. J Therm Anal Calorim. 2005;81(1):217–23.

    Article  CAS  Google Scholar 

  49. Marco C, Ellis G, Gómez MA, Arribas JM. Analysis of the dynamic crystallisation of isotactic polypropylene/α-nucleating agent systems by DSC. J Therm Anal Calorim. 2002;68(1):61–74.

    Article  CAS  Google Scholar 

  50. Arnal ML, Balsamo V, Ronca G, Sánchez A, Müller AJ, Cañizales E, et al. Applications of successive self-nucleation and annealing (SSA) to polymer characterization. J Therm Anal Calorim. 2000;59(1):451–70.

    Article  CAS  Google Scholar 

  51. Gray AP. Polymer crystallinity determinations by DSC. Thermochim Acta. 1970;1(6):563–79.

    Article  CAS  Google Scholar 

  52. Pyda M. Polyvinyl alcohol (PVA) heat capacity, enthalpy, entropy, gibbs energy. In: Advanced thermal analysis system (ATHAS) database. Springer-Verlag GmbH, SpringerMaterials. 2014. http://materials.springer.com/polymerthermodynamics/docs/athas_0147. Accessed 27 Oct 2015.

  53. MATLAB R2015b. Version 8.6.0 ed. Natick: The Mathworks, Inc; 2015.

  54. Cebe P, Hu X, Kaplan DL, Zhuravlev E, Wurm A, Arbeiter D, Schick C. Beating the heat—fast scanning melts silk beta sheet crystals. Sci Rep. 2013;3:7.

    Article  Google Scholar 

  55. Cebe P, Partlow BP, Kaplan DL, Wurm A, Zhuravlev E, Schick C. Using flash DSC for determining the liquid state heat capacity of silk fibroin. Thermochim Acta. 2015;615:8–14.

    Article  CAS  Google Scholar 

  56. Cebe P, Partlow BP, Kaplan D, Wurm A, Zhuravlev E, Schick C. Chapter 5: Fast scanning calorimetry of silk fibroin protein: sample mass and specific heat capacity determination. In: Schick C, Mathot VBF, editors. Fast scanning methods. New York: Springer International Publishing; 2016. p. 187–203.

    Chapter  Google Scholar 

  57. Mileva D, Androsch R, Zhuravlev E, Schick C, Wunderlich B. Homogeneous nucleation and mesophase formation in glassy isotactic polypropylene. Polymer. 2012;53(2):277–82.

    Article  CAS  Google Scholar 

  58. Androsch R, Schick C, Schmelzer JWP. Sequence of enthalpy relaxation, homogeneous crystal nucleation and crystal growth in glassy polyamide 6. Eur Polym J. 2014;53:100–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Support for this research was provided by the National Science Foundation, Polymers Program of the Division of Materials Research, under DMR-1206010, and through the MRI Program under DMR-0520655 which provided thermal analysis instrumentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peggy Cebe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomas, D., Cebe, P. Self-nucleation and crystallization of polyvinyl alcohol. J Therm Anal Calorim 127, 885–894 (2017). https://doi.org/10.1007/s10973-016-5811-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5811-1

Keywords

Navigation