Skip to main content
Log in

Designing an artificial neural network using radial basis function (RBF-ANN) to model thermal conductivity of ethylene glycol–water-based TiO2 nanofluids

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this article, thermal conductivity of ethylene glycol–water-based TiO2 nanofluids has been modeled by artificial neural network. For this purpose, thermal conductivity of nanofluids with volume fractions of 0.2–1 % has been collected in temperatures of 30–70 °C. These data were modeled by artificial neural networks. So two common types of neural networks were used, and the results were compared with each other. One of these networks was multilayer perceptron, and the other one was radial basis approximation. Finally, an experimental relationship was suggested for calculating thermal conductivity of this nanofluid and the results were compared with the results of radial basis neural network. This comparison shows that neural networks are very powerful in modeling the nanofluids experimental data and are able to follow the patterns of these data with a high precision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ghadimi A, Saidur R, Metselaar H.S.C. A review of nanofluid stability properties and characterization in stationary conditions. Int J Heat Mass Transf. 2011;54:4051–4068.

    Article  CAS  Google Scholar 

  2. Azwadi N, Sidik C, Mohammed HA, Alawi OA, Samion S. A review on preparation methods and challenges of nanofluids. Int Commun Heat Mass Transf. 2014;54:115–125.

    Article  Google Scholar 

  3. Munkhbayar B, Tanshen MR, Jeoun J, Chung H, Jeong H. Surfactant-free dispersion of silver nanoparticles into MWCNT-aqueous nanofluids prepared by one-step technique and their thermal characteristics. Ceram Int. 2013;39:6415–25.

    Article  CAS  Google Scholar 

  4. Kumar SA, Meenakshi KS, Narashimhan BRV, Srikanth S, Arthanareeswaran G. Synthesis and characterization of copper nanofluid by a novel one-step method. Mater Chem Phys. 2009;113:57–62.

    Article  CAS  Google Scholar 

  5. Ponmani S, William JKM, Samuel R, Nagarajan R, Sangwai JS. Formation and characterization of thermal and electrical properties of CuO and ZnO nanofluids in xanthan gum. Coll Surf A Physicochem Eng Asp. 2014;443:37–43.

    Article  CAS  Google Scholar 

  6. Hemmat Esfe M, Yan W-M, Akbari M, Karimipour A, Hassani M. Experimental study on thermal conductivity of DWCNT-ZnO/water-EG nanofluids. Int Commun Heat Mass Transf. 2015;68:248–51.

    Article  CAS  Google Scholar 

  7. Hemmat Esfe M, Saedodin S. Experimental investigation and proposed correlations for temperature- dependent thermal conductivity enhancement of ethylene glycol based nanofluid containing ZnO nanoparticles. J Heat Mass Transf Res. 2014;1:47–54.

    Google Scholar 

  8. Hemmat Esfe M, Saedodin S, Biglari M, Rostamian H. Experimental investigation of thermal conductivity of CNTs-Al2O3/water: A statistical approach. Int Commun Heat Mass Transf. 2015;69:29–33.

    Article  CAS  Google Scholar 

  9. Hemmat Esfe M, Hassani Ahangar MR, Rejvani M, Toghraie D, Hajmohammad MH. Designing an artificial neural network to predict dynamic viscosity of aqueous nanofluid of TiO2 using experimental data. Int Commun Heat Mass Transf. 2016;75:192–6.

    Article  CAS  Google Scholar 

  10. Hemmat Esfe M, Saedodin S, Yan W-M, Afrand M, Sina N. Study on thermal conductivity of water-based nanofluids with hybrid suspensions of CNTs/Al2O3 nanoparticles. J Therm Anal Calorim. 2016;124:1–6.

    Article  Google Scholar 

  11. Hemmat Esfe M, Afrand M, Yan W, Yarmand H, Toghraie D, Dahari M. Effects of temperature and concentration on rheological behavior of MWCNTs/SiO2(20-80)-SAE40 hybrid nano-lubricant. Int Commun Heat Mass Transf. 2016;76:133–138.

    Article  CAS  Google Scholar 

  12. Hemmat Esfe M, Saedodin S, Asadi A, Karimipour A, et al. Thermal conductivity and viscosity of Mg (OH) 2-ethylene glycol nanofluids. J Therm Anal Calorim. 2015;120:1145–9.

    Article  CAS  Google Scholar 

  13. Hemmat Esfe M, Naderi A, Akbari M, Afrand M, Karimipour A. Evaluation of thermal conductivity of COOH-functionalized MWCNTs/water via temperature and solid volume fraction by using experimental data and ANN methods. J. Therm. Anal. Calorim. 2015;121:1273–8.

    Article  CAS  Google Scholar 

  14. Rayatzadeh HR, Saffar-Avval M, Mansourkiaei M, Abbassi A. Effects of continuous sonication on laminar convective heat transfer inside a tube using water–TiO2 nanofluid. Exp Therm Fluid Sci. 2013;48:8–14.

    Article  CAS  Google Scholar 

  15. Buonomo B, Manca O, Marinelli L, Nardini S. Effect of temperature and sonication time on nanofluid thermal conductivity measurements by nano-flash method. Appl Therm Eng. 2015;91:181–90.

    Article  CAS  Google Scholar 

  16. Mahbubul IM, Shahrul IM, Khaleduzzaman SS, Saidur R, Amalina MA, Turgut A. Experimental investigation on effect of ultrasonication duration on colloidal dispersion and thermophysical properties of alumina–water nanofluid. Int J Heat Mass Transf. 2015;88:73–81.

    Article  CAS  Google Scholar 

  17. Zawrah MF, Khattab RM, Girgis LG, El Daidamony H, Abdel Aziz RE. Stability and electrical conductivity of water-base Al2O3 nanofluids for different applications. HBRC J. 2015. doi:10.1016/j.hbrcj.2014.12.001.

  18. Hemmat M, Akbar A, Arani A, Rezaie M, Yan W, Karimipour A, et al. Experimental determination of thermal conductivity and dynamic viscosity of Ag–MgO/water hybrid nanofluid. Int Commun Heat Mass Transf. 2015;66:189–95.

    Article  Google Scholar 

  19. Hemmat Esfe M, Saedodin S, Wongwises S, Toghraie D. An experimental study on the effect of diameter on thermal conductivity and dynamic viscosity of Fe/water nanofluids. J Therm Anal Calorim. 2015;119:1817–24.

    Article  CAS  Google Scholar 

  20. Hemmat Esfe M, Saedodin S, Mahian O, Wongwises S, Hemmat M, Saedodin S, et al. Efficiency of ferromagnetic nanoparticles suspended in ethylene glycol for applications in energy devices: Effects of particle size, temperature, and concentration. Int Commun Heat Mass Transf. 2014;58:138–146.

    Article  CAS  Google Scholar 

  21. Hemmat Esfe M, Afrand M, Karimipour A, Yan W-M, Sina N. An experimental study on thermal conductivity of MgO nanoparticles suspended in a binary mixture of water and ethylene glycol. Int Commun Heat Mass Transf. 2015;67:173–5.

    Article  CAS  Google Scholar 

  22. Estellé P, Halelfadl S, Maré T. Lignin as dispersant for water-based carbon nanotubes nanofluids: impact on viscosity and thermal conductivity. Int Commun Heat Mass Transf. 2014;57:8–12.

    Article  Google Scholar 

  23. Xia G, Jiang H, Liu R, Zhai Y. Effects of surfactant on the stability and thermal conductivity of Al2O3/de-ionized water nanofluids. Int J Therm Sci. 2014;84:118–24.

    Article  CAS  Google Scholar 

  24. Hemmat Esfe M, Afrand M, Wongwises S, Naderi A, Asadi A, Rostami S. Applications of feedforward multilayer perceptron artificial neural networks and empirical correlation for prediction of thermal conductivity of Mg(OH)2–EG using experimental data. Int Commun Heat Mass Transf. 2015;67:46–50.

    Article  Google Scholar 

  25. Hemmat Esfe M, Afrand M, Yan W-M, Akbari M. Applicability of artificial neural network and nonlinear regression to predict thermal conductivity modeling of Al2O3–water nanofluids using experimental data. Int Commun Heat Mass Transf. 2015;66:246–249.

    Article  Google Scholar 

  26. Hemmat Esfe M, Wongwises S, Naderi A, Asadi A, Safaei MR, Rostamian H, Dahari M, Karimipour A. Thermal conductivity of Cu/TiO2–water/EG hybrid nanofluid: experimental data and modeling using artificial neural network and correlation. Int Commun Heat Mass Transf. 2015;66:100–104.

    Article  CAS  Google Scholar 

  27. Hemmat Esfe M, Rostamian H, Afrand M, Karimipour A, Hassani M. Modeling and estimation of thermal conductivity of MgO–water/EG (60:40) by artificial neural network and correlation. Int Commun Heat Mass Transf. 2015;68:98–103.

    Article  CAS  Google Scholar 

  28. Hemmat Esfe M, Saedodin S, Sina N, Afrand M. Designing an artificial neural network to predict thermal conductivity and dynamic viscosity of ferromagnetic nanofluid. Int Commun Heat Mass Transf. 2015;68:50–7.

    Article  CAS  Google Scholar 

  29. Hemmat Esfe M, Saedodin S, Naderi A, Alirezaie A, Karimipour A, Wongwises S. Modeling of thermal conductivity of ZnO-EG using experimental data and ANN methods. Int Commun Heat Mass Transf. 2015;63:35–40.

    Article  CAS  Google Scholar 

  30. Hojjat M, Etemad SGG, Bagheri R, Thibault J. Thermal conductivity of non-Newtonian nanofluids : Experimental data and modeling using neural network. Int J Heat Mass Transf. 2011;54:1017–23.

    Article  CAS  Google Scholar 

  31. Chandra Sekhara Reddy M, Vasudeva Rao V. Experimental studies on thermal conductivity of blends of ethylene glycol-water-based TiO2 nanofluids. Int Commun Heat Mass Transf. 2013;46:31–6.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hemmat Esfe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hemmat Esfe, M. Designing an artificial neural network using radial basis function (RBF-ANN) to model thermal conductivity of ethylene glycol–water-based TiO2 nanofluids. J Therm Anal Calorim 127, 2125–2131 (2017). https://doi.org/10.1007/s10973-016-5725-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5725-y

Keywords

Navigation