Skip to main content
Log in

Investigation of the enthalpy/entropy variation and structure of Ni–Mn–Sn (Co, In) melt-spun alloys

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The effect of In and Co additions on the structure and thermal properties of melt-spun process Ni–Mn–Sn alloys has experimentally investigated at a solidification rate of ~48 m s−1. The present study reports on the analysis of the microstructure, martensitic transformation of Ni50Mn42.5Sn7.5, Ni50Mn37.5Sn7.5Co5 and Ni50Mn37Sn6.5In6.5. Heusler alloys produced by melt spinning. The crystal structures of the fabricated alloys were determined by means of X-ray diffraction. While the as-spun alloy Ni50Mn42.5Sn7.5 displayed a single-phase (14M monoclinic martensite) structure at room temperature, the as-spun Ni50Mn37.5Sn7.5Co5 displayed a main martensitic phase of a four-layered orthorhombic (4O) structure and the as-spun Ni50Mn37Sn6.5In6.5 displayed a single-phase cubic Heusler L21. The characteristic transformation temperatures and the thermodynamic parameters of the samples were determined by differential scanning calorimetry measurements. This study investigated the effect of the substitution of Co by Mn in Ni50Mn42.5−xSn7.5Cox. The martensitic transformation temperatures, enthalpy and entropy changes were found to increase progressively with doping Co content and the effect of the substitution of In by Mn. The martensitic transformation temperatures, enthalpy and entropy changes were found to decrease progressively with doping In.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Manosa Ll, Moya X, Planes A, Krenke T, Acet M, Wassermann EF. Ni-Mn-based magnetic shape memory alloys: magnetic properties and martensitic transition. Mater Sci Eng A. 2008;49:481–2.

    Google Scholar 

  2. Krenke T, Moya X, Aksoy S, Acet M, Entel P, Manosa Ll, Planes A, Elermanc Y, Yüceld A, Wassermanna EF. Electronic aspects of the martenistic transition in Ni–Mn based Heusler alloys. J Magn Magn Mater. 2007;310:2788–9.

    Article  CAS  Google Scholar 

  3. Llamazares JLS, Sanchez T, Santos JD, Pérez MJ, Sanchez ML, Hernando B, et al. Martensitic phase transformation in rapidly solidified Mn50Ni40In10 alloy ribbons. Appl Phys Lett. 2008;92:012513.

    Article  Google Scholar 

  4. Xuan HC, Xie KX, Wang DH, Han ZD, Zhang CL, Gu BX, Du W. Effect of annealing on the martensitic transformation and magnetocaloric effect in Ni44.1Mn44.2Sn11.7 ribbons. Appl Phys Lett. 2008;92:242506.

    Article  Google Scholar 

  5. Hernando B, Llamazares JLS, Santos JD, Escoda L, Suñol JJ, Varga R, Baldomir D, Serantes D. Thermal and magnetic field-induced martensite-austenite transition in Ni50.3Mn35.3Sn14.4 ribbons. Appl Phys Lett. 2008;92:042504.

    Article  Google Scholar 

  6. Santos JD, Sanchez T, Alvarez P, Sanchez ML, Sánchez Llamazares JL, Hernando B, Escoda L, Suñol JJ, Varga R. Microstructure and magnetic properties of Ni50Mn37Sn13 Heusler alloy ribbons. J Appl Phys. 2008;103:07B326.

    Article  Google Scholar 

  7. Krenke T, Duman E, Acet M, Wassermann EF, Moya X, Mañosa L, Planes A. Inverse magnetocaloric effect in ferromagnetic Ni–Mn–Sn alloys. Nat Mater. 2005;4:450–4.

    Article  CAS  Google Scholar 

  8. Wang W, Jinke Y, Zhai Q, Luo Zh, Zheng H. Origin of retarded martensitic transformation in Heusler Ni–Mn–Sn melt-spun ribbons. Intermetallics. 2013;42:126–9.

    Article  Google Scholar 

  9. Kainuma R, Imano Y, Ito W, Sutou Y, Morito H, Okamoto S, Kitakami O, Oikawa K, Fujita A, Kanomata T, Ishida K. Magnetic-field-induced shape recovery by reverse phase transformation. Nature. 2006;439:957–60.

    Article  CAS  Google Scholar 

  10. Kainuma R, Imano Y, Ito W, Morito H, Sutou Y, Oikawa K, Fujita A, Ishida K. Magnetic shape memory effect in a Heusler-type Ni43Co7Mn39Sn11 polycrystalline alloy. Appl Phys Lett. 2006;88:192513.

    Article  Google Scholar 

  11. Ito K, Ito W, Umetsu RY, Tajima S, Kawaura H, Kainuma R, Ishida K. Metamagnetic shape memory effect in polycrystalline NiCoMnSn alloy fabricated by spark plasma sintering. Scripta Mater. 2009;61:504–7.

    Article  CAS  Google Scholar 

  12. Sharma VK, Chattopadhyay MK, Kumar R, Ganguli T, Tiwari P, Roy SB. Magnetocaloric effect in Heusler alloys Ni50Mn34In16 and Ni50Mn34Sn16. J Phys: Condens Matter. 2007;19:496207.

    Google Scholar 

  13. Hernando B, Sánchez Llamazares JL, Santos JD, Prida VM, Baldomir D, Serantes D. Magnetocaloric effect in melt spun Ni50.3Mn35.5Sn14.4 ribbons. Appl Phys Lett. 2008;92:132507.

    Article  Google Scholar 

  14. Recarte V, Pérez-Landazábal JI, Kustov S, Cesari E. Entropy change linked to the magnetic field induced martensitic transformation in a Ni–Mn–In–Co shape memory alloy. J Appl Phys. 2010;107:053501.

    Article  Google Scholar 

  15. Khan M, Pathak AK, Paudel MR, Dubenko I, Stadler S, Ali N. Magnetoresistance and field-induced structural transitions in Ni50Mn50−xSnx Heusler alloys. J Magn Magn Mater. 2008;320:L21–5.

    Article  CAS  Google Scholar 

  16. Han ZD, Wang DH, Qian B, Feng JF, Jiang XF, Du YW. Phase transitions, magnetocaloric effect and magnetoresistance in Ni–Co–Mn–Sn ferromagnetic shape memory alloy. Jpn J Appl Phys. 2010;49:010211.

    Article  Google Scholar 

  17. Umetsu RY, Ito K, Ito W, Koyama K, Kanomata T, Ishida K, Kainuma R. Kinetic arrest behavior in martensitic transformation of NiCoMnSn metamagnetic shape memory alloy. J Alloys Compds. 2011;509:1389–93.

    Article  CAS  Google Scholar 

  18. Chen F, Tong YX, Tian B, Zheng YF, Liu Y. Time effect of martensitic transformation in Ni43Co7Mn41Sn9. Intermetallics. 2010;18:188.

    Article  Google Scholar 

  19. Chen F, Tong YX, Tian B, Li L, Zheng YF. Effect of pre-strain on martensitic transformation of Ni43Mn43Co7Sn7 high-temperature shape memory alloy. Mater Lett. 2010;64:1879–82.

    Article  CAS  Google Scholar 

  20. Ito W, Xu X, Umetsu RY, Kanomata T, Ishida K, Kainuma R. Concentration dependence of magnetic moment in Ni50−xCoxMn50−yZy (Z = In, Sn) Heusler alloys. Appl Phys Lett. 2010;97:242512.

    Article  Google Scholar 

  21. Krenke T, Duman E, Acet M, Moya X, Mañosa L, Planes A. Effect of Co and Fe on the inverse magnetocaloric properties of Ni–Mn–Sn. J Appl Phys. 2007;102:033903.

    Article  Google Scholar 

  22. Khovaylo V, Koledov V, Shavrov V, Ohtsuka M, Miki H, Takagi T, Novosa V. Influence of cobalt on phase transitions in Ni50Mn37Sn13. Mat Sci Eng A. 2008;481–482:322–5.

    Article  Google Scholar 

  23. Srivastava V, Chen X, James RD. Hysteresis and unusual magnetic properties in the singular Heusler alloy Ni45Co5Mn40Sn10. Appl Phys Lett. 2010;97:014101.

    Article  Google Scholar 

  24. Umetsu RY, Sheikh A, Ito W, Ouladdiaf B, Ziebeck KRA, Kanomata T, Kainuma R. The effect of Co substitution on the magnetic properties of the Heusler alloy Ni50Mn33Sn17. Appl Phys Lett. 2011;98:042507.

    Article  Google Scholar 

  25. Liu J, Scheerbaum N, Hinz D, Gutfleisch O. Magnetostructural transformation in Ni–Mn–In–Co ribbons. Appl Phys Lett. 2008;92:162509.

    Article  Google Scholar 

  26. Lutterotti L, MAUD CPD Newsletter, IUCr, 2000;24.

  27. Petricek V, Dusek M. The crystallographic computing system. Praha: Institute of Physics; 2000.

    Google Scholar 

  28. Zheng H, Wu D, Xue S, Frenzel J, Eggeler G, Zhai Q. Martensitic transformation in rapidly solidified Heusler Ni49 Mn39 Sn12 ribbons. Acta Mater. 2011;59:5692–5699.

    Article  CAS  Google Scholar 

  29. Raj Kumar DM, Sridhara Rao DV, Rama Rao NV, Manivel Raja M, Singh RK, Suresh KG. In-situ phase transformation studies of Ni48Mn39In13 melt-spun ribbons. Intermetallics. 2012;25:126–30.

    Article  CAS  Google Scholar 

  30. Kaufman L, Hullert M. Thermodynamics of martensite transformation. In: Olson GB, Owen WS, editors. Martensite. Cambridge: ASM International; 1992. p. 41.

    Google Scholar 

  31. Kainuma R, Umetsu RY. Disorder and strain-induced complexity in functional materials chapter 3: Ni–Mn–X Heusler materials. Mater Sci. 2012;148:49.

    CAS  Google Scholar 

  32. Krenke T, Acet M, Wassermann EF, Moya X, Manosa L, Planes A. Martensitic transitions and the nature of ferromagnetism in the austenitic and martensitic states of Ni–Mn–Sn alloys. Phys Rev B. 2005;72:014412.

    Article  Google Scholar 

  33. Ma SC, Shih CW, Liu J, Yuan JH, Lee SY, Lee YI, Chang HW, Chang WC. Wheel speed-dependent martensitic transformation and magnetocaloric effect in Ni–Co–Mn–Sn ferromagnetic shape memory alloy ribbons. Acta Mater. 2015;90:292–302.

    Article  CAS  Google Scholar 

  34. Zheng H, Wang W, Jinke Y, Zhai Q, Luo Zh. Martensitic transformation in melt-spun Heusler Ni–Mn–Sn–Co ribbons. J Mater Res. 2014;29:880–6.

    Article  CAS  Google Scholar 

  35. Bachaga T, Daly R, Suñol JJ, Saurina J, Escoda L, Legarreta LG, Hernando B, Khitouni M. Effects of Co additions on the martensitic transformation and magnetic properties of Ni–Mn–Sn shape memory alloys. J. Supercond Nov Magn. 2015;28:3087–92.

    Article  CAS  Google Scholar 

  36. Zhang Y, Zhang L, Zheng Q, Zheng X, Ming L, Juan D, Yan A. Enhanced magnetic refrigeration properties in Mn-rich Ni–Mn–Sn ribbons by optimal annealing. Sci Rep. 2015;5:11010.

    Article  Google Scholar 

  37. Coll R, Escoda L, Saurina J, Sanchez-Llamazares JL, Hernaudo B, Sunol JJ. Martensitic transformation in Mn–Ni–Sn Heusler alloys. J Therm Anal Calorim. 2010;99:905–9.

    Article  CAS  Google Scholar 

  38. Safaa NS, Hamzah E, Abubakar T, Zamri M, Tanemura M. Influence of Ti additions on the martensitic phase transformation and mechanical properties of Cu–Al–Ni shape memory alloys. J Therm Anal Calorim. 2014;118:111–22.

    Article  Google Scholar 

  39. Adorno AT, Silva RAG. Effect of Ag additions on the reverse martensitic transformation in the Cu-10 mass% al alloy. J Therm Anal Calorim. 2006;83:241–6.

    Article  CAS  Google Scholar 

  40. Bachaga T, Daly R, Escoda L, Suñol JJ, Khitouni M. Influence of chemical composition on martensitic transformation of MnNiIn shape memory alloys. J Therm Anal Calorim. 2015;122:167–73.

    Article  CAS  Google Scholar 

  41. Khovailo VV, Oikawa K, Abe T, Tagaki T. Entropy change at the martensitic transformation in ferromagnetic shape memory alloys Ni2−xMn1−xGa. J Appl Phys. 2003;93:8483–5.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by financial funds from the MAT2013-47231-C2-2-P project. The authors would like to express their gratitude to Xavier Fontrodona Gubau for her XRD support. They would also like to thank Professor Layla Mahfoudi from the English Language Unit at the Faculty of Sciences of Sfax (Tunisia) for his constructive language polishing and editing services.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Bachaga.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bachaga, T., Rekik, H., Krifa, M. et al. Investigation of the enthalpy/entropy variation and structure of Ni–Mn–Sn (Co, In) melt-spun alloys. J Therm Anal Calorim 126, 1463–1468 (2016). https://doi.org/10.1007/s10973-016-5716-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5716-z

Keywords

Navigation