Skip to main content
Log in

Thermal behavior of the chlorophyll extract from a mixture of plants and seaweed

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this study the UV–Vis spectrophotometry and thermal analysis were used to characterize a commercialized product, as “Chlorophyll” named in our study with the acronym FARCH-phyll, this being offered as a detoxifier for the human body. The information update concerning thermal decomposition mechanism of chlorophyll represents the basic purpose of this investigation, and the secondary aim is related to the dealer prospectus confirmation. Thus, by the UV–Vis spectrophotometry, the chlorophyll “a,” was detected in FARCH-phyll extracts in both ethylic alcohol and dioxane showing two absorption bands at the wavelengths: λ = 664/428 nm and λ = 665/430 nm, respectively. The thermal decomposition of FARCH-phyll was performed in the temperature range between room temperature and 700 °C, and the thermogravimetric curve highlighting three levels of mass loss accompanied by one endothermic process at 54.8 °C and two exothermic processes at 333.6 and 492.2 °C, respectively, was marked on both curves of differential scanning calorimetry and differential thermal analysis. The first step of mass loss was accurately attributed to the releasing of physically adsorbed compounds on the powder surface. The next levels of powder thermal degradation constituted the basis for identifying the decomposition steps of chlorophyll from FARCH-phyll, in order to show its ways of transformation/decomposition in pheophytin/pyropheophytin and pyropheophorbide in competition with decomposition processes of other components from FARCH-phyll.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Yilmaz C, Gökmen V. Chlorophyll. In: Caballero B, Finglas P, Toldrá F, editors. Encyclopedia of food and health, vol. 2. Elsevier: Academic Press; 2016. p. 37–41. doi:10.1016/B978-0-12-384947-2.00147-1.

  2. Hui R, Li X, Zhao R, Liu L, Gao Y, Wei Y. UV-B radiation suppresses chlorophyll fluorescence, photosynthetic pigment and antioxidant systems of two key species in soil crusts from the Tengger Desert, China. J Arid Environ. 2015;113:6–15.

    Article  Google Scholar 

  3. Buchert AM, Civello PM, Martinez GA. Effect of hot air, UV-C, white light and modified atmosphere treatments on expression of chlorophyll degrading genes in postharvest broccoli (Brassica oleracea L.) florets. Sci Hortic. 2011;127:214–9.

    Article  Google Scholar 

  4. Cherif J, Derbel N, Nakkach M, von Bergmann H, Jemal F, Lakhdar ZB. Analysis of in vivo chlorophyll fluorescence spectra to monitor physiological state of tomato plants growing under zinc stress. J Photochem Photobiol B. 2010;101:332–9.

    Article  CAS  Google Scholar 

  5. Benlloch-Tinoco M, Kaulmann A, Corte-Real J, Rodrigo D, Martínez-Navarrete N, Bohn T. Chlorophylls and carotenoids of kiwifruit puree are affected similarly or less by microwave than by conventional heat processing and storage. Food Chem. 2015;187:254–62.

    Article  CAS  Google Scholar 

  6. Kim TS, Decker EA, Lee JH. Effects of chlorophyll photosensitisation on the oxidative stability in oil-in-water emulsions. Food Chem. 2012;133:1449–55.

    Article  CAS  Google Scholar 

  7. Lisiewska Z, Kmiecik W, Słupski J. Contents of chlorophylls and carotenoids in frozen dill: effect of usable part and pre-treatment on the content of chlorophylls and carotenoids in frozen dill (Anethum graveolens L.), depending on the time and temperature of storage. Food Chem. 2004;84:511–8.

    Article  CAS  Google Scholar 

  8. Srilaong V, Aiamla-or S, Soontornwat A, Shigyo M, Yamauchi N. UV-B irradiation retards chlorophyll degradation in lime (Citrus latifolia Tan.) fruit. Postharvest Biol Technol. 2011;59:110–2.

    Article  CAS  Google Scholar 

  9. Kaewsuksaeng S, Tatmala N, Srilaong V, Pongprasert N. Postharvest heat treatment delays chlorophyll degradation and maintains quality in Thai lime (Citrus aurantifolia Swingle cv. Paan) fruit. Postharvest Biol Technol. 2015;100:1–7.

    Article  CAS  Google Scholar 

  10. Du L, Yang X, Song J, Ma Z, Zhang Z, Pang X. Characterization of the stage dependency of high temperature on green ripening reveals a distinct chlorophyll degradation regulation in banana fruit. Sci Hortic. 2014;180:139–46.

    Article  CAS  Google Scholar 

  11. Sanchez C, Baranda AB, Martinez de Maranon I. The effect of high pressure and high temperature processing on carotenoids and chlorophylls content in some vegetables. Food Chem. 2014;163:37–45.

    Article  CAS  Google Scholar 

  12. Aparicio-Ruiz R, Gandul-Rojas B. Decoloration kinetics of chlorophylls and carotenoids in virgin olive oil by autoxidation. Food Res Int. 2014;65:199–206.

    Article  CAS  Google Scholar 

  13. Santos D, Duarte B, Cacador I. Biochemical and photochemical feedbacks of acute Cd toxicity in Juncus acutus seedlings: the role of non-functional Cd-chlorophylls. Estuar Coast Shelf Sci. 2015;. doi:10.1016/j.ecss.2015.10.005.

    Google Scholar 

  14. Pumilia G, Cichon MJ, Cooperstone JL, Giuffrida D, Dugo G, Schwartz SJ. Changes in chlorophylls, chlorophyll degradation products and lutein in pistachio kernels (Pistacia vera L.) during roasting. Food Res Int. 2014;65B:193–8.

    Article  Google Scholar 

  15. Ishiwatari M, Ishiwatari R, Sakashita H, Tatsumi T. Thermogravimetry and pyrolysis—GC of chlorophyll-a: with a special emphasis on thermal behavior of its phytyl chain. J Anal Appl Pyrol. 1995;35:237–47.

    Article  CAS  Google Scholar 

  16. Guler C, Tunc F. Thermal decomposition of adsorbed β-carotene and chlorophyll on acid-activated clay. Thermochim Acta. 1992;198:141–5.

    Article  CAS  Google Scholar 

  17. Buoninsegni FT, Becucci L, Moncelli MR, Guidelli R, Agostiano A, Cosma P. Electrochemical and photoelectrochemical behavior of chlorophyll a films adsorbed on mercury. J Electroanal Chem. 2003;550–551:229–40.

    Article  Google Scholar 

  18. Suponeva EP, Kazakova AA, Kisselev BA. Electrochemical oxidation of chlorophyll “a” in thin films at Pt and SnO2 electrodes. J Electroanal Chem Interfacial Electrochem. 1989;276:75–81.

    Article  Google Scholar 

  19. Suponeva EP, Kazakova AA, Kisselev BA. Electrochemical oxidation of chlorophyll “a” in thin films at Pt and SnO2 electrodes. Bioelectrochem Bioenerg. 1989;22:75–81.

    Article  CAS  Google Scholar 

  20. Takahashi F, Kikuchi R. Photoelectrolysis using chlorophyll electrodes. BBA Bioenergetics. 1976;430:490–500.

    Article  CAS  Google Scholar 

  21. Sumanta N, Haque CI, Nishika J, Suprakash R. Spectrophotometric analysis of chlorophylls and carotenoids from commonly grown fern species by using various extracting solvents. Res J Chem Sci. 2014;4:63–9.

    Google Scholar 

  22. Dos Santos ACA, Calijuri MC, Moraes EM, Adorno MAT, Falco PB, Carvalho DP, Deberdt GLB, Benassi SF. Comparison of three methods for chlorophyll determination: spectrophotometry and fluorimetry in samples containing pigment mixtures and spectrophotometry in samples with separate pigments through high performance liquid chromatography. Acta Limnol Bras. 2003;15:7–18.

    Google Scholar 

  23. Picazo A, Rochera C, Vicente E, Miracle MR, Camacho A. Spectrophotometric methods for the determination of photosynthetic pigments in stratified lakes: a critical analysis based on comparisons with HPLC determinations in a model lake. Limnetica. 2013;32:139–58.

    Google Scholar 

  24. Elarab M, Ticlavilca AM, Torres-Rua AF, Maslova I, McKee M. Estimating chlorophyll with thermal and broadband multispectral high resolution imagery from an unmanned aerial system using relevance vector machines for precision agriculture. Int J Appl Earth Obs Geoinf. 2015;43:32–42.

    Article  Google Scholar 

  25. Limantara L, Dettling M, Indrawati R, Brotosudarmo THP. Analysis on the chlorophyll content of commercial green leafy vegetables. Procedia Chem. 2015;14:225–31.

    Article  CAS  Google Scholar 

  26. Suzuki K, Kamimura A, Hooker SB. Rapid and highly sensitive analysis of chlorophylls and carotenoids from marine phytoplankton using ultra-high performance liquid chromatography (UHPLC) with the first derivative spectrum chromatogram (FDSC) technique. Mar Chem. 2015;176:96–109.

    Article  CAS  Google Scholar 

  27. Wang L, Pu H, Sun DW. Estimation of chlorophyll-a concentration of different seasons in outdoor ponds using hyperspectral imaging. Talanta. 2016;147:422–9.

    Article  CAS  Google Scholar 

  28. Moberg L, Karlberg B. Validation of a multivariate calibration method for the determination of chlorophyll a, b and c and their corresponding pheopigments. Anal Chim Acta. 2001;450:143–53.

    Article  CAS  Google Scholar 

  29. Rys M, Juhasz C, Surowka E, Janeczko A, Saja D, Tobias I, Skoczowski A, Barna B, Gullner G. Comparison of a compatible and an incompatible pepper-tobamovirus interaction by biochemical and non-invasive techniques: chlorophyll a fluorescence, isothermal calorimetry and FT-Raman spectroscopy. Plant Physiol Biochem. 2014;83:267–78.

    Article  CAS  Google Scholar 

  30. Han Y, Yan D, Zhao Y, Peng C, Xiao X. Toxic effects of protoberberine alkaloids from Rhizoma Coptidis on Tetrahymena thermophila BF5 growth based on microcalorimetry. A reliable evaluation method of structure–function relationship. J Therm Anal Calorim. 2012;108:341–6.

    Article  CAS  Google Scholar 

  31. Wacławska I, Szumera M. Use of thermal analysis in the study of soil Pb immobilization. J Therm Anal Calorim. 2010;99:873–7.

    Article  Google Scholar 

  32. Ravindran B, Sravani R, Mandal AB, Contreras-Ramos SM, Sekaran G. Instrumental evidence for biodegradation of tannery waste during vermicomposting process using Eudrilus eugeniae. J Therm Anal Calorim. 2013;111:1675–84.

    Article  CAS  Google Scholar 

  33. Rouff AA. The use of TG/DSC–FT-IR to assess the effect of Cr sorption on struvite stability and composition. J Therm Anal Calorim. 2012;110:1217–23.

    Article  CAS  Google Scholar 

  34. Samide A, Ciobanu G. Thermogravimetric analysis of plant water content in relation with heavy metal stress. J Therm Anal Calorim. 2013;111:1139–47.

    Article  Google Scholar 

  35. Strezov V, Moghtaderi B, Lucas JA. Thermal study of decomposition of selected biomass samples. J Therm Anal Calorim. 2003;72:1041–8.

    Article  CAS  Google Scholar 

  36. Gross J. Pigments in vegetables: chlorophylls and carotenoids. New York: Van Nostrand Reinhold; 1991.

    Book  Google Scholar 

  37. Larkum AWD, Douglas SE, Raven JA, editors. Photosynthesis in algae. London: Kluwer Academic Publisher; 2003.

    Google Scholar 

  38. Aparicio-Ruiz R, Minguez-Mosquera MI, Gandul-Rojas B. Thermal degradation kinetics of chlorophyll pigments in virgin olive oils. 1. Compounds of series a. J Agric Food Chem. 2010;58:6200–8.

    Article  CAS  Google Scholar 

  39. Diop Ndiaye N, Dhuique-Mayer C, Cisse M, Dornier M. Identification and thermal degradation kinetics of chlorophyll pigments and ascorbic acid from ditax nectar (Detarium senegalense J.F. Gmel). J Agric Food Chem. 2011;59:12018–27.

    Article  CAS  Google Scholar 

  40. Kaiser A, Jaksch AV, Mix K, Kammerer DR, Carle R. Processing and storage of innovative pasty parsley (Petroselinum crispum (Mill.) Nym ex A. W. Hill) and celeriac (Apium graveolens L. var. rapaceum (Mill.) DC.) products. J Appl Bot Food Qual. 2014;87:139–46.

    Google Scholar 

  41. Qiaoa MH, Taoa F, Caoa Y, Xua GQ. Adsorption and thermal dissociation of pyrrole on Si(1 0 0)-2 × 1. Surf Sci. 2003;544:285–94.

    Article  Google Scholar 

  42. Dungan RS, Reeves JB. Pyrolysis of foundry sand resins: a determination of organic products by mass spectrometry. J Environ Sci Health Part A. 2005;40:1557–67.

    Article  CAS  Google Scholar 

  43. Lifshitz A, Tamburu C, Suslensky A. Isomerization and decomposition of pyrrole at elevated temperatures. Studies with a single-pulse shock tube. J Phys Chem. 1989;93:5802–8.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bogdan Tutunaru.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samide, A., Tutunaru, B. Thermal behavior of the chlorophyll extract from a mixture of plants and seaweed. J Therm Anal Calorim 127, 597–604 (2017). https://doi.org/10.1007/s10973-016-5490-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5490-y

Keywords

Navigation