Skip to main content
Log in

Influence of modifiers on the thermal characteristic of glasses of the TeO2–P2O5–ZnO–PbF2 system

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A series of fluorotellurite glasses based on 70TeO2–5MxOy–10P2O5–10ZnO–5PbF2 in mol%, where MxOy = MgO, SrO, PbO, CdO, were prepared by the conventional melt-quenching method. The influence of modifiers on the thermal properties of glasses was analyzed. Thermal characteristics of glasses such as the transition temperature T g, the temperature for the crystallization onset T x, the maximum crystallization temperature T c, and the thermal stability parameter were determined by DSC method. Analysis of the local atomic interactions in the structure of glasses has been used to explain the course of the crystallization. The formation of crystalline phases was confirmed by X-ray diffraction analysis and SEM methods. Obtained results demonstrate that the new compositions lead to good thermal properties which make these glasses promising candidates for rare earth ions doping. Low value of the glass-forming tendency parameter K H indicates high tendency to devitrify. The kind of modifiers affects the crystallization process in fluorotellurite glasses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Savelii I, Jules JC, Gadret G, Kibler B, Fatome J, El-Amraoui M, Manikandan N, Zheng X, Desevedavy F, Dudley JM, Troles J, Renversez G, Smektala F. Suspended core tellurite glass optical fibers for infrared supercontinuum generation. Opt Mater. 2011;33:1661–6.

    Article  CAS  Google Scholar 

  2. Hampton RN, Hang W, Saunders GA, El-Mallawany RAH. The dielectric properties of tellurite glass. Phys Chem Glasses. 1988;29:100–5.

    CAS  Google Scholar 

  3. Vogel W. Glass chemistry. 2nd ed. Berlin: Springer-Verlag; 1994.

    Book  Google Scholar 

  4. El-Mallawany RAH. Tellurite glass handbook: physical properties and data. Boca Raton: CRC Press; 2002.

    Google Scholar 

  5. Mazurin OV, Streltsina MV, Shavio-Shavaikovskaya TP. Handbook of glass data. Amsterdam: Elsevier; 1991.

    Google Scholar 

  6. Jha A, Richards BDO, Jose G, Fernandez TT, Hill CJ, Lousteau J, Joshi P. Review on structural, thermal, optical and spectroscopic properties of tellurium oxide based glasses for fibre optic and waveguide applications. Int Mater Rev. 2012;57:357–82.

    Article  CAS  Google Scholar 

  7. Liao G, Chen Q, Xing J, Gebavi H, Milanese D, Fokine M, Ferraris M. Preparation and characterization of new fluorotellurite glasses for photonics application. J Non Cryst Solids. 2009;355:447–52.

    Article  CAS  Google Scholar 

  8. Chen F, Wei T, Jing X, Tian Y, Zhang J, Xu S. Investigation of mid-infrared emission characteristics and energy transfer dynamics in Er3+ doped oxyfluoride tellurite glass. Sci Rep. 2015. doi:10.1038/srep10676.

    Google Scholar 

  9. Zhan H, Shi T, Zhang A, Zhou Z, Si J, Lin A. Nonlinear characterization on mid-infrared fluorotellurite glass fiber. Mater Lett. 2014;120:174–6.

    Article  CAS  Google Scholar 

  10. Yue J, Xue T, Huang F, Liao M, Ohishi Y. Thermally stable mid-infrared fluorotellurite glass with low OH content. J Non Cryst Solids. 2015;408:1–6.

    Article  CAS  Google Scholar 

  11. O’Donnell MD, Miller CA, Furniss D, Tikhomirov VK, Seddon AB. Fluorotellurite glasses with improved mid-infrared transmission. J Non Cryst Solids. 2003;331:48–57.

    Article  Google Scholar 

  12. El Sayed Y, Damak K, Maalej R, Rüssel C. Thermal stability and UV–Vis-NIR spectroscopy of a new erbium-doped fluorotellurite glass. Philos Mag. 2012;92:899–911.

    Article  Google Scholar 

  13. O’Donnell MD, Richardson K, Stolen R, Seddon AB, Furniss D, Tikhomirov VK, Rivero C, Ramme M, Stegeman R, Stegeman G, Couzi M, Cardinal T. Tellurite and fluorotellurite glasses for fiberoptic Raman amplifiers: glass characterization, optical properties, Raman gain, preliminary fiberization, and fiber characterization. J Am Ceram Soc. 2007;90:1448–57.

    Article  Google Scholar 

  14. El Sayed Y. Characterization of oxyfluoride tellurite glasses through thermal, optical and ultrasonic measurements. J Phys D Appl Phys. 2005;38:3970–5.

    Article  Google Scholar 

  15. Yang Q, Chen D, Qian Q. Effects of Nb2O5/WO3 codoping on thermal stability and Raman spectral properties of tellurite glasses. J Inorg Mater. 2009;24:1049–53.

    Article  CAS  Google Scholar 

  16. Khafagy AH, El-Adawy AA, Higazy AA, El-Rabaie S, Eid AS. The glass transition temperature and infrared absorption spectra of: (70 − x)TeO2 + 15B2O3 + 15P2O5 + xLi2O glasses. J Non Cryst Solids. 2008;354:1460–6.

    Article  CAS  Google Scholar 

  17. Nishara AB, Rajendran V. Structure and elastic properties of TeO2–BaF2 glasses. J Phys Chem Solids. 2006;67:1697–702.

    Article  Google Scholar 

  18. Reben M, Sroda M. Influence of fluorine on thermal properties of lead oxyfluoride glass. J Therm Anal Calorim. 2013;113(1):77–81.

    Article  CAS  Google Scholar 

  19. Görlich E. The effective charges and the electronegativity. Kraków: Polish Academy of Art and Sciences; 1997.

    Google Scholar 

  20. Stoch L. Thermal analysis and thermochemistry of vitreous into crystalline state transition. J Therm Anal Cal. 2004;77:7–16.

    Article  CAS  Google Scholar 

  21. Zhou Y, Yang Y, Huang F, Ren J, Yuan S, Chen G. Characterization of new tellurite glasses and crystalline phases in the TeO2–PbO–Bi2O3–B2O3 system. J Non Cryst Solids. 2014;386:90–4.

    Article  CAS  Google Scholar 

  22. Souri D, Salehizadeh SA. Glass transition, fragility, and structural features of amorphous nickel–tellurate–vanadate samples. J Therm Anal Calorim. 2013;112:689–95.

    Article  CAS  Google Scholar 

  23. Cabral AA, Cardoso AAD, Zanotto ED. Glass-forming ability versus stability of silicate glasses, experimental test. J Non Cryst Solids. 2003;320:1–8.

    Article  CAS  Google Scholar 

  24. Komatsu T, Tawarayama H, Mohri H, Matusita K. Properties and crystallization behaviors of TeO2–LiNbO3 glasses. J Non Cryt Solids. 1991;135:105–13.

    Article  CAS  Google Scholar 

  25. Weinberg MC. Glass-forming ability and glass stability in simple. J Non Cryst Solids. 1994;167(1–2):81–8.

    Article  CAS  Google Scholar 

  26. Avramov I, Zanotto ED, Prado MO. Glass-forming ability versus stability of silicate glasses. II. Theoretical demonstration. J Non Cryst Solids. 2003;320:9–20.

    Article  CAS  Google Scholar 

  27. Nazabal V, Todoroki S, Nukui A, Matsumoto T, Suehara S, Hondo T, Araki T, Inoue S, Rivero C, Cardinal T. Oxyfluoride tellurite glasses doped by erbium: thermal analysis, structural organization and spectral properties. J Non Cryst Solids. 2003;325:85–102.

    Article  CAS  Google Scholar 

  28. Stevenson AJ, Serier-Brault H, Gredin P, Mortier M. Fluoride materials for optical applications: single crystals, ceramics, glasses, and glass–ceramics. J Fluor Chem. 2011;132:1165–73.

    Article  CAS  Google Scholar 

  29. Fedorov PP, Luginina AA, Popov AI. Transparent oxyfluoride glass ceramics. J Fluor Chem. 2015;172:22–50.

    Article  CAS  Google Scholar 

  30. Mortier M, Bensalah A, Dantelle G, Patriarche G, Vivien D. Rare-earth doped oxyfluoride glass-ceramics and fluoride ceramics: synthesis and optical properties. Opt Mater. 2007;29:1263–70.

    Article  CAS  Google Scholar 

  31. Kima SW, Hasegawaa T, Yumotob H, Ishigakia T, Uematsub K, Todaa K, Satob M. Synthesis and photoluminescence properties of Mn2+ co-doped white emitting (Sr, Sn)ZnP2O7 phosphor. J Ceram Process Res. 2014;15:177–80.

    Google Scholar 

  32. Mosˇner P, Vosejpkova´ K, Koudelka L, Benes L. Thermal studies of ZnO–B2O3–P2O5–TeO2 glasses. J Therm Anal Calorim. 2012;107:1129–35.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the statutory funds from AGH University of Science and Technology Department of Materials Science and Ceramics AGH number WIMiC No 11.11.160.365 in 2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kosmal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reben, M., Yousef, E.S., Grelowska, I. et al. Influence of modifiers on the thermal characteristic of glasses of the TeO2–P2O5–ZnO–PbF2 system. J Therm Anal Calorim 125, 1279–1286 (2016). https://doi.org/10.1007/s10973-016-5421-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5421-y

Keywords

Navigation