Skip to main content
Log in

Crystallization kinetic and thermal and electrical properties of β-spodumeness/cordierite glass–ceramics

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The aim of the present work was to investigate the crystallization kinetic of spodumene-/cordierite-based glass–ceramics. Thus, three glasses were prepared with compositions based predominantly on cordierite and β-spodumeness crystalline phases, and a mass ratio 1:1 of both phases. The kinetic parameters were determined by means of non-isothermal methods using differential thermal analysis. A multi-peaks fit method was used based on the Fraser–Suzuki equation to determine the crystallization temperature peak. The crystallization kinetic was investigated using the Ozawa and Kissinger methods. The samples were crystalized according to DTA analyses and characterized by using X-ray diffraction. Additionally, the coefficient of thermal expansion and electrical properties of the glass–ceramics was determined. The results showed activation energy for crystallization ranging from 121 to 333 kJ mol−1. The main crystalline phases were β-spodumeness to composition L, cordierite and β-quartzss to composition C and β-quartzss and spinel to composition CL. Taking into account the thermal and electrical properties of the heat-treated samples, these glass–ceramics show potential to LTCC (low thermal co-fired ceramics) application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Montedo ORK, Bertan FM, Piccoli R, Hotza D, Klein AN, Oliveira APN. Low thermal expansion sintered LZSA glass-ceramics. Am Ceram Soc Bull. 2008;87:34–47.

    Google Scholar 

  2. Montedo ORK, Floriano FJ, Filho JO, Angioletto E, Bernardin AM. Sintering behavior of LZSA glass-ceramics. Mater Res. 2009;. doi:10.1590/S1516-14392009000200014.

    Google Scholar 

  3. Montedo ORK, Floriano FJ, Filho JO. Sintering kinetics of a 18.8Li2O.8.3ZrO2.64.2SiO2.8.7Al2O3 glass ceramic. Ceram Int. 2011;. doi:10.1016/j.ceramint.2011.03.047.

    Google Scholar 

  4. Montedo ORK, Hotza D, Oliveira APN, Meszaros R, Travitzky N, Greil P. Crystallisation kinetics of a β-spodumene-based glass ceramic. Adv Mater Sci Eng. 2012;. doi:10.1155/2012/525428.

    Google Scholar 

  5. Shao H, Liang K, Peng F. Crystallization kinetics of MgO–Al2O3–SiO2 glass-ceramics. Ceram Int. 2004;. doi:10.1016/j.ceramint.2003.10.015.

    Google Scholar 

  6. Goel A, Shaaban ER, Melo FCL, Ribeiro MJ, Ferreira JMF. Non-isothermal crystallization kinetic studies on MgO–Al2O3–SiO2–TiO2 glass. J Non-Cryst Solids. 2007;. doi:10.1016/j.jnoncrysol.2007.04.008.

    Google Scholar 

  7. Marghussian VK, Balazadegan OU, Eftekhari-yekta B. Crystallization behaviour, microstructure and mechanical properties of cordierite-mullite glass ceramics. J Alloy Compd. 2009;. doi:10.1016/j.jallcom.2009.05.080.

    Google Scholar 

  8. Dernovsek O, Naeini A, Preu G, Wersing W, Eberstein M, Schiller WA. LTCC glass-ceramic composites for microwave application. J Eur Ceram Soc. 2001;21:1693–7.

    Article  CAS  Google Scholar 

  9. Golonka LJ. Technology and applications of low temperature cofired ceramic (LTCC) based sensors and microsystems. Bull Pol Acad Sci Technol Sci. 2006;54(2):221–31.

    CAS  Google Scholar 

  10. Wu J, Li Z, Huang Y, Li F, Yang Q. Fabrication and characterization of low temperature co-fired cordierite glass-ceramics from potassium feldspar. J Alloy Compd. 2014;. doi:10.1016/j.jallcom.2013.08.187.

    Google Scholar 

  11. Majumder M, Mukhopadhyay S, Parkash O, Kumar D. Sintering and crystallisation behaviour of chemically prepared cordierite for application in electronic packaging. Ceram Int. 2004;. doi:10.1016/j.ceramint.2003.10.007.

    Google Scholar 

  12. Donald IW. Crystallization kinetics of a lithium zinc silicate glass studied by DTA and DSC. J Non-Cryst Solids. 2002;. doi:10.1016/j.jnoncrysol.2004.08.007.

    Google Scholar 

  13. Kissinger HE. Variation of peak temperature with heating rate in differential thermal analysis. J Res Nat Bur Stand. 1956;57(4):217–21.

    Article  CAS  Google Scholar 

  14. Ozawa T. Kinetic analysis of derivative curves in thermal analysis of non-isothermal crystallization. J Therm Anal Calorim. 1970;2:301–24.

    Article  CAS  Google Scholar 

  15. Matusita K, Sakka S. Kinetic study on non-isothermal crystallization of glass by thermal analysis. Bull Inst Chem Res. 1981;59(3):159–71.

    CAS  Google Scholar 

  16. Matusita K, Sakka S. Study on crystallization kinetics in glass by differential thermal analysis. Thermochem Act. 1979;33:352–4.

    Google Scholar 

  17. Svoboda R, Málek J. Applicability of Fraser–Suzuki function in kinetic analysis of complex crystallization processes. J Therm Anal Calorim. 2013;. doi:10.1007/s10973-012-2445-9.

    Google Scholar 

  18. Perejón A, Sánchez-Jiménez PE, Criado JM, Pérez-Maqueda LA. Kinetic analysis of complex solid-state reactions. A new deconvolution procedure. J Phys Chem. B. 2011;. doi:10.1021/jp110895z.

    Google Scholar 

  19. Fraser RDB, Uzuk E. Resolution of overlapping absorption bands by least squares procedures. Anal Chem. 1966;38(12):1770–3.

    Article  CAS  Google Scholar 

  20. Lopes AAS, Monteiro RCC, Soares RS, Lima MMRA, Fernandes MHV. Crystallization kinetics of a barium-zinc borosilicate glass by a non-isothermal method. J Alloy Compd. 2014;. doi:10.1016/j.jallcom.2013.12.086.

    Google Scholar 

  21. Amista P, Cesari M, Montenero A, Gnappi G, Lan L. Crystallization behaviour in the system MgO-Al2O3-SiO2. J Non-Cryst Solids. 1995;. doi:10.1016/0022-3093(95)00451-3.

    Google Scholar 

  22. Watanabe K, Giess EA. Crystallization kinetics of high-cordierite glass. J Non-Cryst Solids. 1994;169:306–10.

    Article  CAS  Google Scholar 

  23. Donald IW. The crystallization kinetics of a glass based on the cordierite composition studied by DTA and DSC. J Mater Sci. 1995;. doi:10.1007/BF01178424.

    Google Scholar 

  24. Xingzhong G, Lingjie Z, Hui Y. Effects of Li replacement on the nucleation, crystallization and microstructure of Li2O-Al2O3-SiO2 glass. J Non-Cryst Solids. 2008;. doi:10.1016/j.jnoncrysol.2008.05.013.

    Google Scholar 

  25. Karmakar B, Kundu P, Jana S, Dwivedi RN. Crystallization kinetics and mechanism of low-expansion lithium aluminosilicate glass–ceramics by dilatometry. J Am Ceram Soc. 2002;. doi:10.1111/j.1151-2916.2002.tb00498.x.

    Google Scholar 

  26. Guo X, Yang H, Han C, Song F. Crystallization and microstructure of Li2O–Al2O3–SiO2 glass containing complex nucleating agent. Thermochim Acta. 2006;. doi:10.1016/j.tca.2006.02.016.

    Google Scholar 

  27. Cheng K. Determining crystallization kinetic parameters of Li2O–Al2O3–SiO2 glass from derivative differential thermal analysis curves. Mater Sci Eng B. 1999;60:194–9.

    Article  Google Scholar 

  28. Montedo ORK, Alves IT, Faller CA, Bertan FM, Piva DH, Piva RH. Evaluation of electrical properties of glass-ceramics obtained from mill scale. Mater Res Bull. 2015;. doi:10.1016/j.materresbull.2015.07.040.

    Google Scholar 

  29. Kaprálik I. Thermal expansion of spinels MgCr2O4, MgAl2O4 and MgFe2O4. Chem Zvesti. 1969;23:665–70.

    Google Scholar 

  30. Mandal S, Chakrabarti S, Das SK, Ghatak S. Synthesis of low expansion ceramics in lithia-alumina-silica system with zirconia additive using the powder precursor in the form of hydroxyhydrogel. Ceram Int. 2007;. doi:10.1016/j.ceramint.2005.08.015.

    Google Scholar 

  31. Banjuraizah J, Mohamad H, Ahmad ZA. Synthesis and characterization of xMgO–1.5Al2O3–5SiO2 (x = 2.6–3.0) system using mainly talc and kaolin through the glass route. Mater Chem Phys. 2011;. doi:10.1016/j.matchemphys.2011.05.026.

    Google Scholar 

Download references

Acknowledgements

The authors are very grateful to Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Brazil) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil) for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. R. K. Montedo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nuernberg, R.B., Faller, C.A. & Montedo, O.R.K. Crystallization kinetic and thermal and electrical properties of β-spodumeness/cordierite glass–ceramics. J Therm Anal Calorim 127, 355–362 (2017). https://doi.org/10.1007/s10973-016-5397-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5397-7

Keywords

Navigation