Skip to main content
Log in

Effect of waste gypsum on the setting and early mechanical properties of belite-C2.75B1.25A3$ cement

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Belite-barium calcium sulfoaluminate (C2.75B1.25A3$) cement was belite-rich cement containing C2.75B1.25A3$ mineral of 9 mass%. Due to the differences in dissolution velocity and element sulfur content, the effects of citro-, phosphor- and FGD gypsum on the setting and early mechanical properties of belite-C2.75B1.25A3$ cement were investigated. The experimental results showed that citrogypsum had the fastest dissolution velocity among all the waste gypsum. This resulted in the short initial and final setting time of belite-C2.75B1.25A3$ cement with citrogypsum. Moreover, the early compressive strength of belite-C2.75B1.25A3$ cement with citrogypsum was high, owing to that much content of AFt and C–S–H gel was formed at an early age. In summary, the later compressive strength of belite-C2.75B1.25A3$ cement with any type of waste gypsum was superior to that of cement with reference natural gypsum. Also, the early compressive strength of cement with any type of waste gypsum was comparable to that of cement with reference gypsum. Therefore, citro-, phosphor- and FGD gypsum all could replace natural gypsum as an adjusting agent of belite-C2.75B1.25A3$ cement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Martín-Sedeño MC, Cuberos AJM, De la Torre ÁG, Álvarez-Pinazo G, Ordónez LM, Gateshki M, Aranda MAG. Aluminum-rich belite sulfoaluminate cements: Clinkering and early age hydration. Cem Concr Res. 2010;40(3):359–69.

    Article  Google Scholar 

  2. Ernst W, Price L, Nathan M, Chris H, Leticia OM. Carbon dioxide emissions from the global cement industry. Rev Energy Environ. 2001;26:303–29.

    Article  Google Scholar 

  3. Gartner E. Industrially interesting approaches to “low-CO2” cements. Cem Concr Res. 2004;34(9):1489–98.

    Article  CAS  Google Scholar 

  4. Krajči L, Mojumdar SC, Janotka I, Puertas F, Palacios M, Kuliffayova M. Performance of composites with metakaolin-blended cements. J Therm Anal Calorim. 2015;119:851–63.

    Article  Google Scholar 

  5. Schneider M, Romer M, Tschudin M, Bolio H. Sustainable cement production-present and future. Cem Concr Res. 2011;41(7):642–50.

    Article  CAS  Google Scholar 

  6. Sharp JH, Lawrence CD, Yang R. Calcium sulphoaluminate cements-low energy cements, special cements or what? Adv Cem Res. 1999;11(1):3–13.

    Article  CAS  Google Scholar 

  7. Chatterjee AK. High belite cements-present status and future technological opinions part 1 and 2. Cem Concr Res. 1996;26(8):1213–25.

    Article  CAS  Google Scholar 

  8. Popescu CD, Muntean M, Sharp JH. Industrial trial production of low energy belite cement. Cem Concr Compos. 2003;25(7):689–93.

    Article  CAS  Google Scholar 

  9. Gies A, Knofel D. Influence of alkalis on the composition of belite rich cement clinkers and the technological properties of the resulting cements. Cem Concr Res. 1986;16(3):411–22.

    Article  CAS  Google Scholar 

  10. Cheng X, Chang J, Lu LC, Liu FT, Teng B. Study of Ba-bearing calcium sulphoaluminate minerals and cement. Cem Concr Res. 2000;30(1):77–81.

    Article  CAS  Google Scholar 

  11. Zhang WW, Lu LC, Cui YJ, Chang J, Cheng X. Microstructure and properties of belite-calcium barium sulphoaluminate. J Chin Ceram Soc. 2007;35:467–71.

    CAS  Google Scholar 

  12. Lu LC, Zhang WW, Xuan HZ, Cheng X. Calcination condition of belite-calcium barium sulphoaluminate cement and its properties. J Chin Ceram Soc. 2008;36:165–9.

    CAS  Google Scholar 

  13. Zhao Y, Lu L, Wang S, Gong C. Dicalcium silicates doped with strontia, sodium oxide and potassia. Adv Cem Res. 2015;27(6):311–20.

    Article  Google Scholar 

  14. Zhang J, Gong C, Wang S, Lu L, Cheng X. Effect of strontium oxide on the formation mechanism of dicalcium silicate with barium oxide and sulfur trioxide. Adv Cem Res. 2015;27(7):381–7.

    Article  Google Scholar 

  15. Singh NB, Kalra M, Kumar M, Rai S. Hydration of ternary cementitious system: Portland cement, fly ash and silica fume. J Therm Anal Calorim. 2015;119:381–9.

    Article  CAS  Google Scholar 

  16. Wu HX, Lu LC, Chen C, Liu SQ, Wang H, Cheng X. Influence of gypsum on composition and performance of hardened paste of belite-barium. Adv Cem Res. 2009;21(4):169–74.

    Article  CAS  Google Scholar 

  17. Chandara C, Azizli KAM, Ahmad ZA, Sakai E. Use of waste gypsum to replace natural gypsum as set retarders in Portland cement. Waste Manag. 2009;29(5):1675–9.

    Article  CAS  Google Scholar 

  18. Fan CF, Henry Teng H. Surface behavior of gypsum during dissolution. Chem Geol. 2007;245(3–4):242–53.

    Article  CAS  Google Scholar 

  19. ASTM. Standard test methods for time of setting of hydraulic cement by Vicat needle. 2008.

  20. Cheng XB. The relationship between the types of gypsum and its dissolution rate for cement. J Chin Ceram Soc. 1987;2:179–81.

    Google Scholar 

  21. ASTM. Standard Specification for Portland cement. 2005.

  22. Lanzón M, García-Ruiz PA. Effect of citric acid on setting inhibition and mechanical properties of gypsum building plasters. Constr Build Mater. 2012;28(1):506–11.

    Article  Google Scholar 

  23. Singh M. Treating waste phosphogypsum for cement and plaster manufacture. Cem Concr Res. 2002;32(7):1033–8.

    Article  CAS  Google Scholar 

  24. Huang Y, Qian J, Liang J, Liu N, Li F, Shen Y. Characterization and calorimetric study of early-age hydration behaviors of synthetic ye’elimite doped with the impurities in phosphogypsum. J Therm Anal Calorim. 2015;. doi:10.1007/s10973-015-5009-y.

    Google Scholar 

  25. Wang X, Yan BL, Liu C, Luo X, Jiang LZ, Song YA. Study of the influence of calcium sulfite on cement performance and its optimization disposal. Bull Chin Ceram Soc. 2010;29(6):1421–8.

    CAS  Google Scholar 

  26. Motzet H, Pöllmann H. Synthesis and characterisation of sulfite-containing AFm phases in the system CaO–Al2O3–SO2–H2O. Cem Concr Res. 1999;29:1003–11.

    Article  Google Scholar 

  27. Altuna IA, Sertb Y. Utilization of weathered phosphogypsum as set retarder in Portland cement. Cem Concr Res. 2004;34:677–80.

    Article  Google Scholar 

  28. Rocha CAA, Cordeiro GC, Toledo Filho RD. Use of thermal analysis to determine the hydration products of oil well cement pastes containing NaCl and KCl. J Therm Anal Calorim. 2015;122:1279–88.

    Article  CAS  Google Scholar 

  29. Maheswaran S, Iyer NR, Palani GS, Alagu Pandi R, Divina Dikar D, Kalaiselvam S. Effect of high temperature on the properties of ternary blended cement pastes and mortars. J Therm Anal Calorim. 2015;122:775–86.

    Article  CAS  Google Scholar 

  30. Zhang G, Zhao J, Wang P, Xu L. Effect of HEMC on the early hydration of Portland cement highlighted by isothermal calorimetry. J Therm Anal Calorim. 2015;119:1833–43.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by Natural Science Foundations of China (Grant 51272091) and Shandong Province Bold Talent Program (ZR2015EM002). We also thank Program for Scientific Research Innovation Team in Colleges and Universities of Shandong Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoude Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, B., Wang, S., Chen, Y. et al. Effect of waste gypsum on the setting and early mechanical properties of belite-C2.75B1.25A3$ cement. J Therm Anal Calorim 125, 75–83 (2016). https://doi.org/10.1007/s10973-016-5265-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5265-5

Keywords

Navigation