Skip to main content
Log in

A study of thermal behavior of cesium phosphate

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Cesium phosphates with different Cs/P molar ratios were prepared by a solution evaporation method. X-ray powder diffraction, thermogravimetric, and differential thermal analyses were performed in order to reveal the chemical transformation and phase compositions which take place during the heating of the mixtures Cs2CO3/(NH4)2HPO4 and CsNO3/(NH4)2HPO4 as well as individual compound. The effects of the Cs/P molar ratio, Cs source and treatment temperature on thermal behavior of the cesium phosphates were investigated. The results showed that different reactions take place with molar ratio from 1/2 to 3/1. Meanwhile, the thermostability of Cs2CO3 and CsNO3 intimately affects the phase composition and phase transition during heating process. However, for all the Cs–P oxides samples, the crystallinity was decreased differently after higher temperature treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Cai X, Dai GJ, Tan SZ, Ouyang Y, Ouyang YS, Shi QS. Synergistic antibacterial zinc ions and cerium ions loaded α-zirconium phosphate. Mater Lett. 2012;67:199–201.

    Article  CAS  Google Scholar 

  2. Karlsson M, Andersson C, Hjortkjaer J. Hydroformylation of propene and 1-hexene catalysed by a α-zirconium phosphate supported rhodium-phosphine complex. J Mol Catal A Chem. 2001;166:337–43.

    Article  CAS  Google Scholar 

  3. Parida KM, Sahu BB, Das DP. A comparative study on textural characterization: cation-exchange and sorption properties of crystalline α-zirconium(IV), tin(IV), and titanium(IV) phosphates. J Colloid Interface Sci. 2004;270:436–45.

    Article  CAS  Google Scholar 

  4. Wu WW, Lai SB, Wu XH, Liao S, Hou SY. Preparation of NH4ZrH(PO4)2·H2O via solid-state reaction at low heat and its catalytic performance in the synthesis of butyl acetate. Rare Met. 2008;27:550–4.

    Article  CAS  Google Scholar 

  5. Lu HY, Yan Y, Tong XQ, Yan WF, Yu JH, Xu RR. The structure-directing effect of n-propylamine in the crystallization of open-framework aluminophosphates. Sci China Chem. 2014;57:127–34.

    Article  CAS  Google Scholar 

  6. Suryaprakash RC, Lohmann FP, Wagner M, Abel B, Varga A. Spray drying as a novel and scalable fabrication method for nanostructured CsH2PO4, Pt-thin-film composite electrodes for solid acid fuel cells. RSC Adv. 2014;4:60429–36.

    Article  CAS  Google Scholar 

  7. Blanco E, Delichere P, Millet JMM, Loridant S. Gas phase dehydration of lactic acid to acrylic acid over alkaline-earth phosphates catalysts. Catal Today. 2014;226:185–91.

    Article  CAS  Google Scholar 

  8. Matsuura Y, Onda A, Ogo S, Yanagisawa K. Acrylic acid synthesis from lactic acid over hydroxyapatite catalysts with various cations and anions. Catal Today. 2014;226:192–7.

    Article  CAS  Google Scholar 

  9. Tang CM, Peng JS, Fan GC, Li XL, Pu XL, Bai W. Catalytic dehydration of lactic acid to acrylic acid over dibarium pyrophosphate. Catal Commun. 2014;43:231–4.

    Article  CAS  Google Scholar 

  10. Ai M, Muneyama E, Kunishige A, Ohdan K. Effects of methods of preparing iron phosphate and P/Fe compositions on the catalytic performance in oxidative dehydrogenation of isobutyric acid. J Catal. 1993;144:632–5.

    Article  CAS  Google Scholar 

  11. Muneyama E, Kunishige A, Ohdan K, Ai M. Reduction and reoxidation of iron phosphate and its catalytic activity for oxidative dehydrogenation of isobutyric acid. J Catal. 1996;158:378–84.

    Article  CAS  Google Scholar 

  12. Masui T, Hirai H, Imanaka N, Adachi G. Characterization and thermal behavior of amorphous cerium phosphate. Phys Stat Sol (a). 2003;198:364–8.

    Article  CAS  Google Scholar 

  13. Sun YH, Yan HS, Liu DX, Zhao DF. A comparative study on the dehydration of monoethanolamine over cesium phosphate modified zeolite catalysts. Catal Commun. 2008;9:924–30.

    Article  CAS  Google Scholar 

  14. Guo XH, Du KQ, Huang YX, Ge H, Guo QZ, Wang Y, Wang FH. Application of a composite electrolyte in a solid-acid fuel cell system: a micro-arc oxidation alumina support filled with CsH2PO4. Int J Hydrogen Energy. 2013;38:16387–93.

    Article  CAS  Google Scholar 

  15. Papandrew AB, Zawodzinski TA. Nickel catalysts for hydrogen evolution from CsH2PO4. J Power Sources. 2014;245:171–4.

    Article  CAS  Google Scholar 

  16. Petrova AE, Stishov SM. Elastic properties of KH2PO4 at the ferroelectric phase transition. Solid State Commun. 2013;171:26–9.

    Article  CAS  Google Scholar 

  17. Taninouchi YK, Uda T, Awakura Y. Dehydration of CsH2PO4 at temperatures higher than 260 °C and the ionic conductivity of liquid product. Solid State Ion. 2008;178:1648–53.

    Article  CAS  Google Scholar 

  18. Ponomareva VG, Shutova ES. High-temperature behavior of CsH2PO4 and CsH2PO4–SiO2 composites. Solid State Ion. 2007;178:729–34.

    Article  CAS  Google Scholar 

  19. Ikeda A, Haile SM. The thermodynamics and kinetics of the dehydration of CsH2PO4 studied in the presence of SiO2. Solid State Ion. 2012;213:63–71.

    Article  CAS  Google Scholar 

  20. Lee K. Hidden nature of the high-temperature phase transitions in crystals if KH2PO4-type: Is it a physical change? J Phys Chem Solids. 1996;57:333–42.

    Article  CAS  Google Scholar 

  21. Ortiz E, Vargas A, Mellander BE. On the reported high-temperature phase transition in KH2PO4-strong evidence of partial polymerization instead of a structural phase transition. J Phys Chem Solids. 1998;59:305–10.

    Article  CAS  Google Scholar 

  22. Otomo J, Minagawa N, Wen CJ, Eguchi K, Takahashi H. Protonic conduction of CsH2PO4 and its composite with silica in dry and humid atmospheres. Solid State Ion. 2003;156:357–69.

    Article  CAS  Google Scholar 

  23. Li CS, Suzuki K. Kinetic analyses of biomass tar pyrolysis using the distributed activation energy 11 model by TG/DTA technique. J Therm Anal Calorim. 2009;98:261–6.

    Article  CAS  Google Scholar 

  24. Wang HY, Li CS, Peng ZJ, Zhang SJ. Characterization and thermal behavior of kaolin. J Therm Anal Calorim. 2011;105:157–60.

    Article  CAS  Google Scholar 

  25. Sun XY, Yin SM, Wang HY, Li CS, Zhang SJ. Effect of the addition of cornstalk to coal powder/coal tar combustion. J Therm Anal Calorim. 2012;109:817–23.

    Article  Google Scholar 

  26. Izato Y, Miyake A. Thermal decomposition of molten ammonium nitrate (AN). J Therm Anal Calorim. 2015;122:595–600.

    Article  CAS  Google Scholar 

  27. Jenny Alongi, Cuttica F, Bourbigot S, Malucelli G. Thermal and flame retardant properties of ethylene vinyl acetate copolymers containing deoxyribose nucleic acid or ammonium polyphosphate. J Therm Anal Calorim. 2015;122:705–15.

    Article  Google Scholar 

  28. Li CS, Hirabayashi D, Suzuki K. Synthesis of higher surface area mayenite by hydrothermal method. Mater Res Bull. 2011;46:1307–10.

    Article  CAS  Google Scholar 

  29. Li B, Yan RY, Wang L, Diao YY, Li ZX, Zhang SJ. Synthesis of methyl methacrylate by aldol condensation of methyl propionate with formaldehyde over acid-base bifunctional catalysts. Catal Lett. 2013;143:829–38.

    Article  CAS  Google Scholar 

  30. Guerrant GO, Brown DE. Thermal stability, thermal decomposition of high-analysis fertilizers based on ammonium phosphate. J Agr Food Chem. 1965;13:493–7.

    Article  CAS  Google Scholar 

  31. Gorodylova N, Šulcova P, Bosacka M, Filipek E. DTA-TG and XRD study on the reaction between ZrOCl2·8H2O and (NH4)2HPO4 for synthesis of ZrP2O7. J Therm Anal Calorim. 2014;118:1095–100.

    Article  CAS  Google Scholar 

  32. Muntean C, Brandl W, Iovi A, Negrea P. Studies on the thermal behavior of a complex mineral fertilizer of nitrophosphate type. Thermochim Acta. 2005;439:21–6.

    Article  CAS  Google Scholar 

  33. Hudry D, Rakhmatullin A, Bessada C, Bardez I, Bart F, Jobic S, Deniard P. Reactivity of NH4H2PO4 toward LaCl3 in LiCl-KCl melt flux. step by step formation of monazite-like LaPO4. Inorg Chem. 2009;48:7141–50.

    Article  CAS  Google Scholar 

  34. Abdel-Kader A, Ammar AA, Saleh SI. Thermal behaviour of ammonium dihydrogen phosphate crystals in the temperature range 25–600 °C. Thermochim Acta. 1991;176:293–304.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Basic Research Program of China (2015CB251401), The National Natural Science Funds for Distinguished Young Scholar (No. 21425625), and National Science Fund for Excellent Young Scholars (21422607).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhijian Peng or Chunshan Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, G., Peng, Z. & Li, C. A study of thermal behavior of cesium phosphate. J Therm Anal Calorim 124, 1063–1070 (2016). https://doi.org/10.1007/s10973-015-5192-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-5192-x

Keywords

Navigation