Skip to main content
Log in

A dual-stimuli-responsive polymer into phospholipid membranes

A thermotropic approach

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this study, we investigate the thermotropic effects of diblock copolymer poly(N-isopropylacrylamide)-block-poly(acrylic acid) (PNIPAM-b-PAA) on fully hydrated 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) lipid bilayers and its ability to alter the membranes’ organization, fluidity and phase behavior. The composition of the diblock copolymer and the nature of dispersion medium (pH and ionic strength) were also examined. For these purposes, pure DPPC lipid and polymer–lipid mixed systems, hydrated in three different dispersion media (i.e., HPLC-grade water, phosphate buffer saline and hydrochloric acid solution of pH 4.5), were investigated by differential scanning calorimetry. Two compositions of PNIPAM-b-PAA with different molar ratio of the polymeric blocks were used. PNIPAM-b-PAA presents great scientific interest due to the combination of the special characteristics of its homopolymer components; it is dual responsive both in temperature and in pH changes. The incorporation of the PNIPAM-b-PAA into the DPPC bilayers causes particularly significant perturbations in their thermotropic behavior, slightly different in each dispersion medium. The results indicated the ordering of the polymer guest near the polar head group surface probably by its PAA block and, on the other hand, the penetration of the PNIPAM block into the hydrophobic bilayer core, causing membrane disruption in a temperature-depended manner. We can conclude that the lipid–polymer interactions seem to be affected by the pH and the ionic strength of the hydration medium, as well as the polymer content incorporated in the DPPC bilayer. These studies could be a roadmap in order to rationally design and develop chimeric liposomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

PNIPAM-b-PAA:

Poly(N-isopropylacrylamide)-block-poly(acrylic acid)

DPPC:

1,2-Dipalmitoyl-sn-glycero-3-phosphocholine

PBS:

Phosphate buffer saline

DSC:

Differential scanning calorimetry

LCST:

Lower critical solution temperature

References

  1. Pippa N, Merkouraki M, Pispas S, Demetzos C. DPPC:MPOx chimeric advanced drug delivery nanosystems (chi-aDDnSs): physicochemical and structural characterization, stability and drug release studies. Int J Pharm. 2013;450(1–2):1–10.

    Article  CAS  Google Scholar 

  2. Pippa N, Kaditi E, Pispas S, Demetzos C. PEO-b-PCL–DPPC chimeric nanocarriers: self-assembly aspects in aqueous and biological media and drug incorporation. Soft Matter. 2013;9(15):4073–82.

    Article  CAS  Google Scholar 

  3. Pippa N, Pispas S, Demetzos C. The metastable phases as modulators of biophysical behavior of liposomal membranes. J Therm Anal Calorim. 2015;120(1):937–45.

    Article  CAS  Google Scholar 

  4. Gardikis K, Tsimplouli C, Dimas K, Micha-Screttas M, Demetzos C. New chimeric advanced Drug Delivery nano Systems (chi-aDDnSs) as doxorubicin carriers. Int J Pharm. 2010;402(1–2):231–7.

    Article  CAS  Google Scholar 

  5. Kontogiannopoulos KN, Assimopouloua AN, Hatziantoniou S, Karatasos K, Demetzos C, Papageorgiou VP. Chimeric advanced drug delivery nano systems (chi-aDDnSs) for shikonin combining dendritic and liposomal technology. Int J Pharm. 2012;422(1–2):381–9.

    Article  CAS  Google Scholar 

  6. Kono K, Nakaib R, Morimotob K, Takagishia T. Thermosensitive polymer-modified liposomes that release contents around physiological temperature. Biochim Biophys Acta. 1999;1416(1–2):239–50.

    Article  CAS  Google Scholar 

  7. Kono K, Ozawaa T, Yoshidab T, Ozakia F, Ishizakac Y, Maruyamad K, Kojimae C, Haradaa A, Aoshimab S. Highly temperature-sensitive liposomes based on a thermosensitive block copolymer for tumor-specific chemotherapy. Biomaterials. 2010;31(27):7096–105.

    Article  CAS  Google Scholar 

  8. Jhaveri A, Deshpande P, Torchilin V. Stimuli-sensitive nanopreparations for combination cancer therapy. J Control Release. 2014;190:352–70.

    Article  CAS  Google Scholar 

  9. Chenga R, Menga F, Denga C, Kloka HA, Zhong Z. Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery. Biomaterials. 2013;34(14):3647–57.

    Article  CAS  Google Scholar 

  10. Strandman S, Zhu XX. Thermo-responsive block copolymers with multiple phase transition temperatures in aqueous solutions. Prog Polym Sci. 2015;42:154–76.

    Article  CAS  Google Scholar 

  11. Bastakoti BP, Sudhina G, Kenichi N, Yusuke Y. Stimuli-induced core–corona inversion of micelle of poly(acrylic acid)-block-poly(N-isopropylacrylamide) and its application in drug delivery. Macromol Chem Phys. 2015;216(3):287–91.

    Article  CAS  Google Scholar 

  12. Gil ES, Hudson SM. Stimuli-reponsive polymers and their bioconjugates. Prog Polym Sci. 2004;29:1173–222.

    Article  CAS  Google Scholar 

  13. Ta T, Convertine AJ, Reyes CR, Stayton PS, Porter TM. Thermosensitive liposomes modified with poly(N-isopropylacrylamide-co-propylacrylic acid) copolymers for triggered release of doxorubicin. Biomacromolecules. 2010;11(8):1915–20.

    Article  CAS  Google Scholar 

  14. Ta T, Bartolak-Suki E, Park EJ, Karrobi K, McDannold NJ, Porter TM. Localized delivery of doxorubicin in vivo from polymer-modified thermosensitive liposomes with MR-guided focused ultrasound-mediated heating. J Control Release. 2014;194:71–81.

    Article  CAS  Google Scholar 

  15. Kim JC, Bae SK, Kim JD. Temperature-sensitivity of liposomal lipid bilayers mixed with poly(N-isopropylacrylamide-co-acrylic acid). J Biochem. 1997;121(1):15–9.

    Article  CAS  Google Scholar 

  16. Heyda J, Soll S, Yuan J, Dzubiella J. Thermodynamic description of the LCST of charged thermoresponsive copolymers. Macromolecules. 2014;47(6):2096–102.

    Article  CAS  Google Scholar 

  17. Schild HG. Poly(N-isopropylacrylamide): experiment, theory and application. Prog Polym Sci. 1992;17:163–249.

    Article  CAS  Google Scholar 

  18. Lee SM, Nguyen ST. Smart nanoscale drug delivery platforms from stimuli-responsive polymers and liposomes. Macromolecules. 2013;46(23):9169–80.

    Article  CAS  Google Scholar 

  19. Weng Y, Ding Y, Zhang G. Microcalorimetric investigation on the lower critical solution temperature behavior of N-isopropycrylamide-co-acrylic acid copolymer in aqueous solution. J PhysChem B. 2006;110(24):11813–7.

    CAS  Google Scholar 

  20. Kapou A, Nikolaropoulos S, Siapi E, Mauromoustakos T. Effects of steroidal carriers of alkylating agents on the phase transition in DPPC membrane bilayers. Thermochim Acta. 2005;429(1):53–6.

    Article  CAS  Google Scholar 

  21. Berényi S, Mihály J, Kristyán S, Naszályi Nagy L, Telegdi J, Bóta A. Thermotropic and structural effects of poly(malic acid) on fully hydrated multilamellar DPPC-water systems. Biochim Biophys Acta. 2013;828(2):661–9.

    Article  CAS  Google Scholar 

  22. Bonora S, Torreggianib A, Finia G. DSC and Raman study on the interaction between polychlorinated biphenyls (PCB) and phospholipid liposomes. Thermochim Acta. 2003;408(1–2):55–65.

    Article  CAS  Google Scholar 

  23. Pantusa M, Bartucci R, Sportelli L. Calorimetric and spin-label ESR studies of PEG:2000-DPPE containing DPPC/lyso-PPC mixtures. Colloid Polym Sci. 2007;285(6):649–56.

    Article  CAS  Google Scholar 

  24. Grasso D, Milardi D, La Rosa C, Rizzarelli E. DSC study of the interaction of the prion peptide PrP106-126 with artificial membranes. New J Chem. 2001;25(12):1543–8.

    Article  CAS  Google Scholar 

  25. Tabbakhian M, Rogers JA. Interaction of insulin, cholesterol-derivatize dmannan, and carboxymethyl chitin with liposomes: a differential scanning calorimetry study. Res Pharm Sci. 2012;7(1):43–50.

    CAS  Google Scholar 

  26. Kenji S, Tirrell DA. pH-Dependent complexation of poly(acrylic acid) derivatives with phospholipid vesicle membranes. Macromolecules. 1984;17(9):1692–8.

    Article  Google Scholar 

  27. Smith ΕΑ, Dea PK. Differential scanning calorimetry. Studies of phospholipid membranes: the interdigitated gel phase. In: Elkordy AA, editor. Applications of calorimetry in a wide context—differential scanning calorimetry, isothermal titration calorimetry and microcalorimetry, chapter 18. 2013. pp. 407–444.

  28. Pippa N, Meristoudi A, Pispas S, Demetzos C. Temperature-dependent drug release from DPPC:C12H25-PNIPAM-COOH liposomes: control of the drug loading/release by modulation of the nanocarriers’ components. Int J Pharm. 2015;485(1–2):374–82.

    Article  CAS  Google Scholar 

  29. Munavirov BV, Filippov AV, Rudakova MA, Antzutkin ON. Polyacrylic acid modifies local and lateral mobilities in lipid membranes. J Dispersion Scitechnol. 2014;35(6):848–58.

    Article  CAS  Google Scholar 

  30. Fujiwara M, Grubbs RH, Baldeschwieler JD. Characterization of pH-dependent poly(acrylic acid) complexation with phospholipid vesicles. J Colloid Interface Sci. 1997;185(1):210–6.

    Article  CAS  Google Scholar 

  31. Ta T, Porter TM. Thermosensitive liposomes for localized delivery and triggered release of chemotherapy. J Control Release. 2013;169(1–2):112–25.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Costas Demetzos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolman, I., Pippa, N., Meristoudi, A. et al. A dual-stimuli-responsive polymer into phospholipid membranes. J Therm Anal Calorim 123, 2257–2271 (2016). https://doi.org/10.1007/s10973-015-5080-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-5080-4

Keywords

Navigation