Skip to main content
Log in

Determination of rewetting velocity during jet impingement cooling of hot vertical rod

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A vertical hot rod of 12 mm diameter at 800 ± 10 °C initial temperature has been quenched by sub-cooled round water jet. The water jet of 2.5 and 3.5 mm diameter, at jet Reynolds number of 5000–24,000, impinges normal to the test section of SS-316. An infrared camera is used to determine the wetting front velocity on the hot test surface. The investigations are made up to 40 mm downstream locations in both upper and down sides of the stagnation point. It has been observed that during transient cooling, the wetting front velocity increases with the rise in jet Reynolds number and jet diameter. However, rewetting velocity reduces drastically for the extreme downstream locations away from the stagnation point. The reduction in the wetting front progression for the upper side downstream locations is higher as compared to corresponding bottom side locations. The correlation proposed for the dimensionless rewetting velocity predicts the experimental data of upper and bottom side downstream locations in the error band of +30 to −20 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

A :

Test surface area (m2)

c p :

Specific heat of the surface material (kJ kg−1 K−1)

D :

Diameter of cylindrical rod (m)

d :

Jet diameter (m)

h :

Heat transfer coefficient (W m−2 K−1)

k :

Thermal conductivity (W m−1 K−1)

Q :

Water flow rate (lpm)

q :

Surface heat flux (W m−2)

r :

Downstream distance away from the stagnation point (m)

Re :

Reynolds number (Ud υ−1)

Rw:

Dimensionless rewetting velocity (uD 2α−1)

t :

Time (s)

T :

Temperature (°C)

T a :

Ambient temperature (°C)

U :

Jet velocity at nozzle exit (m s−1)

u :

Rewetting velocity (m s−1)

z/d :

Dimensionless nozzle exit to test surface spacing

υ :

Kinematic viscosity of water (m2 s−1)

α :

Thermal diffusivity of surface (m2 s−1)

ρ :

Density of surface material (kg m−3)

e :

Experimental value

i :

Initial value

j :

Jet

MFB:

Minimum film boiling

p :

Predicted value

RW:

Rewetting

s :

Surface

t :

Transient

References

  1. Chen SJ, Kothari J, Tseng AA. Cooling of a moving plate with an impinging circular water jet. Exp Therm Fluid Sci. 1991;4:343–53.

    Article  Google Scholar 

  2. Xu F, Gadala MS. Heat transfer behavior in the impingement zone under circular water jet. Int J Heat Mass Transf. 2006;49:3785–99.

    Article  Google Scholar 

  3. Hashiehbaf A, Baramade A, Agrawal A, Romano GP. Experimental investigation on an axisymmetric turbulent jet impinging on a concave surface. Int J Heat Fluid Flow. 2015;53:167–82.

    Article  Google Scholar 

  4. Garimella SV, Nenaydykh B. Nozzle geometry effect in liquid jet impingement heat transfer. Int J Heat Mass Transf. 1996;39:2915–23.

    Article  CAS  Google Scholar 

  5. Pan Y, Stevens J, Webb BW. Effect of nozzle configuration on transport in the stagnation zone of axisymmetric, impinging free-surface liquid jets: part 2—local heat transfer. ASME J Heat Transf. 1992;114:880–6.

    Article  CAS  Google Scholar 

  6. Agrawal C, Kumar R, Gupta A, Chatterjee B. Effect of jet diameter on the rewetting of hot horizontal surfaces during quenching. Exp Therm Fluid Sci. 2012;42:25–37.

    Article  Google Scholar 

  7. Agrawal C, Lyon OF, Kumar R, Gupta A, Murray DB. Rewetting of a hot horizontal surface through mist jet impingement cooling. Int J Heat Mass Transf. 2013;58:188–96.

    Article  CAS  Google Scholar 

  8. Agrawal C, Kumar R, Gupta A, Chatterjee B. Rewetting and maximum surface heat flux during quenching of hot surface by round water jet impingement. Int J Heat Mass Transf. 2012;55:4772–82.

    Article  CAS  Google Scholar 

  9. Agrawal C, Kumar R, Gupta A, Chatterjee B. Determination of rewetting on hot horizontal surface with water jet impingement through a sharp edge nozzle. Int J Therm Sci. 2013;71:310–23.

    Article  CAS  Google Scholar 

  10. Agrawal C, Kumar R, Gupta A, Chatterjee B. Determination of rewetting velocity during jet impingement cooling of a hot surface. Trans ASME Therm Sci Eng Appl. 2013;5. doi:10.1115/1.4007437.

  11. Agrawal C, Kumar R, Gupta A, Chatterjee B. Effect of jet diameter on the maximum surface heat flux during quenching of hot surface. Nucl Eng Des. 2013;265:727–36.

    Article  CAS  Google Scholar 

  12. Agrawal C, Kumar R, Gupta A, Chatterjee B. Effect of nozzle geometry on the rewetting of hot surface during jet impingement cooling. Exp Heat Transf. 2014;27:256–75.

    Article  Google Scholar 

  13. Filipovic J, Incropera FP, Viskanta R. Rewetting temperatures and velocity in a quenching experiment. Exp Heat Transf. 1995;8:257–70.

    Article  CAS  Google Scholar 

  14. Karwa N, Roisman TG, Stephan P, Tropea C. Experimental investigation of circular free-surface jet impingement quenching: transient hydrodynamics and heat transfer. Exp Therm Fluid Sci. 2011;35:1435–43.

    Article  CAS  Google Scholar 

  15. Akmal M, Omar AMT, Hammed MS. Experimental investigation of propagation of wetting front on curved surfaces exposed to an impinging water jet. Int J Microstruct Mater Prop. 2008;3:654–81.

    CAS  Google Scholar 

  16. Hall DE, Incropera FP, Viskanta R. Jet impingement boiling from a circular free-surface jet during quenching: part 1—single phase jet. ASME J Heat Transf. 2001;123:901–9.

    Article  CAS  Google Scholar 

  17. Mitsutake Y, Monde M. Heat transfer during transient cooling of high temperature surface with an impingement jet. Heat Mass Transf. 2001;37:321–8.

    Article  CAS  Google Scholar 

  18. Mozumder AK, Woodfield PL, Islam MA, Monde M. Maximum heat flux propagation velocity during quenching by water jet impingement. Int J Heat Mass Transf. 2007;50:1559–68.

    Article  CAS  Google Scholar 

  19. Gradeck M, Kouachi A, Borean JL, Gardin P, Lebouché M. Heat transfer from a hot moving cylinder impinged by a planar sub-cooled water jet. Int J Heat Mass Transf. 2011;54:5527–39.

    Google Scholar 

  20. Dua SS, Tien CL. An experimental investigation of falling-film rewetting. Int J Heat Mass Transf. 1978;21:955–65.

    Article  CAS  Google Scholar 

  21. Saxena AK, Raj VV, Rao VG. Experimental studies on rewetting of hot vertical annular channel. Nucl Eng Des. 2001;208:283–303.

    Article  CAS  Google Scholar 

  22. Piggott BDG, Porthouse DTC. A correlation of rewetting data. Nucl Eng Des. 1975;32:171–81.

    Article  Google Scholar 

  23. Ueda T, Inous N. Rewetting of a hot surface by a falling liquid film-effects of liquid sub-cooling. Int J Heat Mass Transf. 1984;27:999–1005.

    Article  CAS  Google Scholar 

  24. Iloeje OC, Plummer DN, Rohsenow WM, Griffith P. Effect of mass flux, flow quality, thermal and surface properties of materials on rewet of dispersed flow film boiling. ASME J Heat Transf. 1982;104:304–8.

    Article  Google Scholar 

  25. Celata GP, Cumo M, Mariani A, Saraceno L. A comparison between spray cooling and film flow cooling during the rewetting of a hot surface. Heat Mass Transf. 2009;45:1029–35.

    Article  CAS  Google Scholar 

  26. Duffey RD, Porthouse DTC. The physics of rewetting in water reactor emergency core cooling. Nucl Eng Des. 1973;25:379–94.

    Article  CAS  Google Scholar 

  27. Hatta N, Kokado J, Hanasaki K. Numerical analysis of cooling characteristics for water bar. Trans ISIJ. 1983;23:555–64.

    Article  Google Scholar 

  28. Liao Y, Shan D, Liu Z, Wang M. Thermal analysis of the necking phenomenon in fiber drawing. J Therm Anal Calorim 2015. doi:10.1007/s10973-015-4719-5.

  29. Cholewka A, Kasprzyk T, Stanek A, Sieroń-Stołtny K, Drzazga Z. May thermal imaging be useful in cyclist endurance tests? 2015. doi:10.1007/s10973-015-4662-5.

  30. Klein SJ, McClintok A. The description of uncertainties in a single sample experiments. Mech Eng. 1953;75:3–8.

    Google Scholar 

Download references

Acknowledgements

First author is grateful to the AICTE, New Delhi, QIP Centre, IIT Roorkee for the financial support and CTAE, Udaipur, for the permission to carry out research work at IIT Roorkee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chitranjan Agrawal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agrawal, C., Kumar, R., Gupta, A. et al. Determination of rewetting velocity during jet impingement cooling of hot vertical rod. J Therm Anal Calorim 123, 861–871 (2016). https://doi.org/10.1007/s10973-015-4905-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4905-5

Keywords

Navigation