Skip to main content
Log in

Application of thermogravimetric analysis for the evaluation of organic and inorganic carbon contents in agricultural soils

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The presented study focuses on the use of thermogravimetric analysis (TG) for estimating organic (OC) and inorganic carbon (IC) contents in bulk soils of different soil types and agricultural practices. Total carbon (TC) was measured by dry combustion using a total organic carbon (TOC) analyzer. The OC content was obtained as the difference between the TC and IC measurements. Regression equations were developed for relations between the thermal mass losses over various temperature intervals (200–370, 105–550, 110–420, 180–450, 250–440, 250–650, and 200–575 °C) and the OC content to determine the optimal temperature interval for the estimation of OC. The results for IC contents were related to the thermal mass losses at temperatures ranging from 500 to 800 °C. The results demonstrated that the thermal mass losses between 180 and 450 °C were fairly well related to the OC content (R 2 = 0.63), whereas the root-mean-square error of cross-validation (RMSECV) was too high (0.70 % OC). The inclusion of the clay content in the multivariate predictive equation did not importantly lower the RMSECV. By contrast, the thermal mass losses within the interval from 500 to 800 °C were closely related to the IC content determined using the TOC analyzer (R 2 = 0.96), with an acceptable RMSECV of 0.26 %. These results indicate that TG can provide a reliable estimation of the IC content but only rough estimations of the OC content in bulk soils of different types, bedrocks, and land uses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Romig DE, Garlynd MJ, Harris RF, Mcsweeney K. How farmers assess soil health and quality. J Soil Water Conserv. 1995;50:229–36.

    Google Scholar 

  2. Stolbovoy V, Montanarella L, Filippi N, Jones A, Gallego J, Grassi G. Soil sampling protocol to certify the changes of organic matter carbon stock in mineral soil of European union, EUR 21576 EN/2. Luxembourg: Office for Official Publications of the European Communities; 2006. p. 56.

    Google Scholar 

  3. Stolbovoy V, Filippi N, Gallego J, Montanarella L, Piazzi M, Putrella F. Validation of the EU sampling protocol to detect the changes of organic carbon stock in mineral soils in the Piemonte Region (Italy). EUR 22339 EN, Office for Official Publications of the European Communities, Luxembourg; 2006. p 41.

  4. Huber S, Syed B, Fredenschuß A, Ernstsen V, Loveland P. Proposal for European soil monitoring and assessment framework. European Environment Agency, Technical Report 61, Copenhagen; 2001. p. 58.

  5. Gao J, Yu G, He N. Equilibration of the terrestrial water, nitrogen, and carbon cycles: advocating a health threshold for carbon storage. Ecol Eng. 2013;57:366–74.

    Article  Google Scholar 

  6. Sahrawat KL. Importance of inorganic carbon in sequestering carbon in soils of the dry regions. Curr Sci. 2003;84:864–5.

    Google Scholar 

  7. Victoria R, Banwart SA, Black H, Ingram H, Joosten H, Milne E, Noellemeyer E. The benefits of soil carbon: managing soils for multiple economic, societal and environmental benefits. In: Goverse T, editor. UNEP year book 2012: emerging issues in our global environment. UNEP, Nairobi; 2012. p. 19–33.

  8. Walkley A, Black TA. An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 1934;37:29–38.

    Article  CAS  Google Scholar 

  9. Pribyl DW. A critical review of the convencional SOC to SOM conversion factor. Geoderma. 2010;156:75–83.

    Article  CAS  Google Scholar 

  10. Chatterjee A, Lal R, Wielopolski L, Martin MZ, Ebinger MH. Evaluation of different soil carbon determination methods. Crit Rev Plant Sci. 2009;28:164–78.

    Article  CAS  Google Scholar 

  11. Díaz-Zorita M. Soil organic carbon recovery by the Walkley–Black method in typic hapludoll. Commun Soil Sci Plant Anal. 1999;30:739–45.

    Article  Google Scholar 

  12. Sleutel S, De Neve S, Singier B, Hofman G. Quantification of organic carbon in soils: a comparison of methodologies and assessment of the carbon content of organic matter. Commun Soil Sci Plant Anal. 2007;38:2647–57.

    Article  CAS  Google Scholar 

  13. Bisutti I, Hilke I, Raessler M. Determination of total organic carbon—an overview of current methods. Trends Anal Chem. 2004;23:716–26.

    Article  CAS  Google Scholar 

  14. Krishan G, Srivastav SK, Kumar S, Saha SK, Dadhwal VK. Quantifying the underestimation of soil organic carbon by the Walkley and Black technique—examples from Himalayan and Central Indian soils. Curr Sci. 2009;96:1133–6.

    CAS  Google Scholar 

  15. Chaćon N, Dezzeo N, Fölster H, Mogollón P. Comparison between colorimetric and titration methods for organic carbon determination in acidic soils. Commun Soil Sci Plant Anal. 2002;33:203–11.

    Article  Google Scholar 

  16. Plante AF, Fernández JM, Leifeld J. Application of thermal analysis techniques in soil science. Geoderma. 2009;153:1–10.

    Article  CAS  Google Scholar 

  17. Fernández JM, Plante AF, Leifeld J, Rasmussen C. Methodological considerations for using thermal analysis in the characterization of soil organic matter. J Therm Anal Calorim. 2011;104:389–98.

    Article  Google Scholar 

  18. Gaál F, Szöllősy I, Arnold M, Paulik F. Determination of the organic matter, metal carbonate and mobile water in soils. J Therm Anal. 1994;42:1007–16.

    Article  Google Scholar 

  19. Miyazawa M, Pavan MA, De Oliveira EL, Ionashiro M, Silva AK. Gravimetric determination of soil organic matter. Braz Arch Biol Technol. 2000;43:475–8.

    Article  Google Scholar 

  20. Salgado J, Mato MM, Vázquez-Galiñanes A, Paz-Andrade MI, Carballas T. Comparison of two calorimetric methods to determine the loss of organic matter in Galician soils (NW Spain) due to forest wildfires. Thermochim Acta. 2004;410:141–8.

    Article  CAS  Google Scholar 

  21. Siewert C. Rapid screening of soil properties using thermogravimetry. Soil Sci Soc Am J. 2004;68:1656–61.

    Article  CAS  Google Scholar 

  22. Fernández JM, Peltre C, Craine JM, Plante AF. Improved characterization of soil organic matter by thermal analysis using CO2/H2O evolved gas analysis. Environ Sci Technol. 2012;46:8921–7.

    Article  Google Scholar 

  23. Duguy B, Rovira P. Differential thermogravimetry and differential scanning calorimetry of soil organic matter in mineral horizons: effect of wildfires and land use. Org Geochem. 2010;41:742–52.

    Article  CAS  Google Scholar 

  24. Dell’Abate MT, Benedetti A, Sequi P. Thermal methods of organic matter maturation monitoring during a composting process. J Therm Anal Calorim. 2000;61:389–96.

    Article  Google Scholar 

  25. Pietro M, Paola C. Thermal analysis for the evaluation of the organic matter evolution during municipal soild waste aerobic composting process. Thermochim Acta. 2004;413:209–14.

    Article  CAS  Google Scholar 

  26. Montecchio D, Francioso O, Carletti P, Pizzeghello D, Chersich S, Previtali F, Nardi S. Thermal analysis (TG-DTA) and drift spectroscopy applied to investigate the evolution of humic acids in forest soil at different vegetation stages. J Therm Anal Calorim. 2006;83:393–9.

    Article  CAS  Google Scholar 

  27. Plante AF, Pernes M, Chenu C. Changes in clay-associated organic matter quality in a C depletion sequence as measured by differential thermal analyses. Geoderma. 2005;129:186–99.

    Article  CAS  Google Scholar 

  28. Otero M, Lobato A, Cuetos MJ, Sánchez ME, Gómez X. Digestion of cattle manure: thermogravimetric kinetic analysis for the evaluation of organic matter conversion. Bioresour Technol. 2011;102:3404–10.

    Article  CAS  Google Scholar 

  29. Gazcó G, Paz-Ferreiro J, Méndez A. Thermal analysis of soil amended with sewage sludge and biochar form sewage sludge pyrolysis. J Therm Anal Calorim. 2012;108:769–75.

    Article  Google Scholar 

  30. Siewert C, Deyman MS, Kučerík J. Interrelations between soil respiration and its thermal stability. J Therm Anal Calorim. 2012;110:413–9.

    Article  CAS  Google Scholar 

  31. Kučerík J, Čvrtníčkova A, Siewert C. Practical applications of thermogravimetry in soil science, Part 1. Thermal and biological stability of soils from contrasting regions. J Therm Anal Calorim. 2013;113:1103–11.

    Article  Google Scholar 

  32. Kučerík J, Siewert C. Practical applications of thermogravimetry in soil science, Part 2. Modelling and prediction of soil respiration using thermal mass losses. J Therm Anal Calorim. 2014;116:563–70.

    Article  Google Scholar 

  33. Siewert C, Kučerík J. Practical applications of thermogravimetry in soil science. J Therm Anal Calorim. 2014;. doi:10.1007/s10973-014-4256-7.

    Google Scholar 

  34. World reference base for soil resources: a framework for international classification, correlation and communication. Report no. 103. Food and Agriculture Organisation of the United Nations (FAO), Rome; 2006.

  35. ISO 11277. Soil quality—determination of particle size distribution in mineral soil material—method by sieving and sedimentation. International Organisation for Standardization, Geneva; 1998.

  36. ISO10694. Soil quality—determination of organic and total carbon after dry combustion (elementary analysis). International Organisation for Standardization, Geneva; 1995.

  37. Kohavi R. A study of gross validation and bootstrap for estimation and model selection. In: Processing of the fourteenth international joint conference on artificial intelligence 1995;2(12):1137–43.

  38. R Core Team. A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2014.

    Google Scholar 

  39. Maindonald J, Braun WJ. Data analysis and graphics data and functions. R package version 1.16.; 2013.

  40. Atanasov O, Rustschev D. Thermal analysis of peat and peat soils. Thermochim Acta. 1985;90:373–7.

    Article  Google Scholar 

  41. Dlapa P, Simkovic I, Doerr SH, Kanka R, Mataix-Solera J. Application of thermal analysis to elucidate water-repellency changes in heated soils. Soil Sci Soc Am J. 2008;72:1–10.

    Article  CAS  Google Scholar 

  42. Grewal KS, Buchan GD, Sherlock RR. A comparison of three methods of organic carbon determination in some New Zealand soils. J Soil Sci. 1991;42:251–7.

    Article  CAS  Google Scholar 

  43. De Vos B, Vandecasteele B, Deckers J, Muys B. Capability of loss-on-ignition as a predictor of total organic carbon in non-calcareous forest soils. Commun Soil Sci Plant Anal. 2005;36:2899–921.

    Article  Google Scholar 

  44. Schulte EE, Hopkins BG. Estimation of soil organic matter by weight loss-on-ignition. In: Magdoff FR, editor. Soil organic matter: analysis and interpretation. Madison, WI: Soil Science Society of America Inc.; 1996.

    Google Scholar 

  45. Rosell RA, Gasparoni JC. Assessment methods for soil carbon. Florida: Lewis Publishers; 2001.

    Google Scholar 

  46. Wang Y, Lu S, Ren T, Li B. Bound water content of air-dry soils measured by thermal analysis. Soil Sci Soc Am J. 2011;75(2):481–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the assistance of Mr. Oriol Saura Puig and Ms. Tjaša Ahej with the thermogravimetric analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matjaž Kristl.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kristl, M., Muršec, M., Šuštar, V. et al. Application of thermogravimetric analysis for the evaluation of organic and inorganic carbon contents in agricultural soils. J Therm Anal Calorim 123, 2139–2147 (2016). https://doi.org/10.1007/s10973-015-4844-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4844-1

Keywords

Navigation