Skip to main content
Log in

Incompatibility study of ibuprofen in ternary interactive mixture by using differential scanning calorimetry

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The main objective of this work was to use the differential scanning calorimetry in conjunction with optical microscopy to study the compatibility of ibuprofen with lactose and polyvinylpyrrolidone and to provide an explanation(s) for the reduction in the dissolution rate observed from the ternary interactive mixture containing ibuprofen in previous study. Mixtures containing micronized ibuprofen–fine lactose 90:10 and 20:80 w/w showed a decrease in the melting peak of lactose by 14.33 and 10.94 °C, respectively. The addition of 5 % fine lactose to the binary system has the highest effect on the melting point of ibuprofen by reducing the melting peak of ibuprofen from 76.2 to 73.72 °C. Microphotographs obtained from optical microscopy for ibuprofen, binary and ternary interactive mixtures showed that agglomeration of ibuprofen was formed in the binary and ternary interactive mixtures. Lactose and polyvinylpyrrolidone must be avoided in the preparation of ternary interactive mixtures of ibuprofen to prevent drug–excipient interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Saharan V, Kukkar V, Kataria M, Gera M, Choudhury P. Dissolution enhancement of drugs. Part I: technologies and effect of carriers. Int J Health Res. 2009;2:107–24.

    Article  CAS  Google Scholar 

  2. Patel R, Nirav P, Patel N, Patel M. A novel approach for dissolution enhancement of ibuprofen by preparing floating granules. Int J Res Pharm Sci. 2010;1:57–64.

    CAS  Google Scholar 

  3. Rasenack N, Müller B. Ibuprofen crystals with optimized properties. Int J Pharm. 2002;245(1–2):9–24.

    Article  CAS  Google Scholar 

  4. Abrahamsson B, Lennernas H. Application of biopharmaceutic classification system now and in the future. In: Waterbeemd HVD, Lennernas H, Artursson P, editors. Drug bioavailability. Weinheim: Wiley; 2003. p. 495–531.

    Google Scholar 

  5. Charoenchaitrakool M, Dehghani F, Foster NR, Chan HK. Micronization by rapid expansion of supercritical solutions to enhance the dissolution rates of poorly water-soluble pharmaceuticals. Ind Eng Chem Res. 2000;39:4794–802.

    Article  CAS  Google Scholar 

  6. Perrut M, Jung M, Leboeuf F. Enhancement of dissolution rate of poorly-soluble active ingredients by supercritical fluid processes: part I: micronization of neat particles. Int J Pharm. 2005;288(1):3–10.

    Article  CAS  Google Scholar 

  7. Andreou JG, Stewart PJ, Morton DAV. Short-term changes in drug agglomeration within interactive mixtures following blending. Int J Pharm. 2009;372(1–2):1–11.

    Article  CAS  Google Scholar 

  8. Bolten D, Türk M. Micronisation of carbamazepine through rapid expansion of supercritical solution. J Supercrit Fluids. 2012;62:32–40.

    Article  CAS  Google Scholar 

  9. Pinto EC, Carmo FA, Honório TD, Barros R, Castro HCR, Rodrigues CR, et al. Influence of the efavirenz micronization on tableting and dissolution. Pharmaceutics. 2012;4(3):430–41.

    Article  CAS  Google Scholar 

  10. Rasenack N, Mueller BW. Micron-size drug particles: common and novel micronization techniques. Pharm Dev Technol. 2004;9:1–13.

    Article  CAS  Google Scholar 

  11. Allahham A, Stewart P. Enhancement of the dissolution of indomethacin in interactive mixtures using added fine lactose. Eur J Pharm Biopharm. 2007;67(3):732–42.

    Article  CAS  Google Scholar 

  12. Allahham A, Maswadeh H. Study of dissolution kinetics for poorly water-soluble drugs from ternary interactive mixtures in comparison with commercially available capsules. J Pharm Innov. 2014;9(2):106–14.

    Article  Google Scholar 

  13. Hecq J, Deleers M, Fanara D, Vranckx H, Amighi K. Preparation and characterization of nanocrystals for solubility and dissolution rate enhancement of nifedipine. Int J Pharm. 2005;299:167–77.

    Article  CAS  Google Scholar 

  14. Merisko-Liversidge E, Liversidge GG, Cooper ER. Nanosizing: a formulation approach for poorly-water-soluble compounds. Eur J Pharm Sci. 2003;18:113–20.

    Article  CAS  Google Scholar 

  15. Ruan LP, Yu BY, Fu GM, Zhu DN. Improving the solubility of ampelopsin by solid dispersions and inclusion complexes. J Pharm Biomed Anal. 2005;38:457–64.

    Article  CAS  Google Scholar 

  16. Lacasse FX, Hildgen P, McMullen JN. Surface and morphology of spraydried pegylated PLA microspheres. Int J Pharm. 1998;174:101–9.

    Article  CAS  Google Scholar 

  17. Jinno J, Kamada N, Miyake M, Yamada K, Mukai T, Odomi M, Toguchi H, Liversidge GG, Higaki K, Kimura T. Effect of particle size reduction on dissolution and oral absorption of a poorly water-soluble drug, cilostazol, in beagle dogs. J Control Release. 2006;111:56–64.

    Article  CAS  Google Scholar 

  18. Yoshikawa S, Murata R, Shida S, Uwai K, Suzuki T, Katsumata S, Takeshita M. Evaluation of correlation between dissolution rates of loxoprofen tablets and their surface morphology observed by scanning electron microscope and atomic force microscope. Chem Pharm Bull. 2010;58(1):34–7.

    Article  CAS  Google Scholar 

  19. Abbas D, Kaloustian J, Orneto C, Piccerelle P, Portugal H, Nicolay A. DSC and physico-chemical properties of a substituted pyridoquinoline and its interaction study with excipients. J Therm Anal Calorim. 2008;93(2):353–60.

    Article  CAS  Google Scholar 

  20. Pani N, Nath L, Acharya S, Bhuniya B. Application of DSC, IST, and FTIR study in the compatibility testing of nateglinide with different pharmaceutical excipients. J Therm Anal Calorim. 2012;108(1):219–26.

    Article  CAS  Google Scholar 

  21. Bruni G, Amici L, Berbenni V, Marini A, Orlandi A. Drug-excipient compatibility studies. Search of interaction indicators. J Therm Anal Calorim. 2002;68(2):561–73.

    Article  CAS  Google Scholar 

  22. Dumitru T, Tunde J, Adriana F, Eleonora M, Bogdan T. Compatibility study of the acetylsalicylic acid with different solid dosage forms excipients. J Therm Anal Calorim. 2013;112(1):407–19.

    Article  Google Scholar 

  23. Mura P, Faucci M, Manderioli A, Bramanti G, Cevvarelli L. Compatibility study between ibuproxam and pharmaceutical excipients using differential scanning calorimetry, hot-stage microscopy and scanning electron microscopy. J Pharm Biomed Anal. 1998;18:151–63.

    Article  CAS  Google Scholar 

  24. Mura P, Manderioli A, Bramanti G, Furlanetto S, Pinzauti S. Utilization of differential scanning calorimetry as a screening technique to determine the compatibility of ketoprofen with excipients. Int J Pharm. 1995;119:71–9.

    Article  CAS  Google Scholar 

  25. Botha SA, Lotter AP. Compatibility study between oxprenolol hydrochloride, temazepam and tablet excipients using differential scanning calorimetry. Drug Dev Ind Pharm. 1990;16:331–45.

    Article  CAS  Google Scholar 

  26. Marini A, Berbenni V, Pegoreti M, Bruni G, Cofrancesco P, Sinistri C, Villa M. Drug excipient compatibility studies by physic chemical techniques. The case of atenolol. J Therm Anal Calorim. 2003;73:547–61.

    Article  CAS  Google Scholar 

  27. Bogdan T, Ionut L, Geza B, Dumitru T. Compatibility study between indomethacin and excipients in their physical mixtures. J Therm Anal Calorim. 2014;118(2):1293–304.

    Article  Google Scholar 

  28. Maillard LC. Action of amino acids on sugars. Formation of melanoidins in a methodical way. Comp Rend. 1912;154:66–8.

    CAS  Google Scholar 

  29. Wirth DD, Baertschi SW, Johnson RA, Maple SR, Miller MS, Hallenbeck DK, Gregg SM. Maillard reaction of lactose and fluoxetine hydrochloride, a secondary amine. J Pharm Sci. 1998;87:31–9.

    Article  CAS  Google Scholar 

  30. Danehy JP. Maillard reactions: non-enzymic browning in food systems with specific reference to the development of flavour. Adv Food Res. 1986;30:77–138.

    Article  CAS  Google Scholar 

  31. Abdoh A, Al-Omari MM, Badwan AA, Jaber AM. Amlodipine besylate-excipients interaction in solid dosage form. Pharm Dev Technol. 2004;9(1):15–24.

    Article  CAS  Google Scholar 

  32. Ledl F, Schleicher E. New aspects of the maillard reaction in foods and in the human-body. Angew Chem Int. 1990;29(6):565–94.

    Article  Google Scholar 

  33. Mauron J. The maillard reaction in food; a critical review from the nutritional standpoint. Prog Food Nutr Sci. 1981;5(1–6):5–35.

    CAS  Google Scholar 

  34. Desai S, Shaikh M, Dharwadkar S. Preformulation compatibility studies of etamsylate and fluconazole drugs with lactose by DSC. J Therm Anal Calorim. 2003;71:651–8.

    Article  CAS  Google Scholar 

  35. Misra M, Misra AK, Panpalia GM. Interaction study between pefloxacin mesilate and some diluents using DSC supported with isothermal method. J Therm Anal Calorim. 2007;89(3):803–8.

    Article  CAS  Google Scholar 

  36. Tiţa B, Fuliaş A, Bandur G, Marian E, Tiţa D. Compatibility study between ketoprofen and pharmaceutical excipients used in solid dosage forms. J Pharm Biomed Anal. 2011;56(2):221–7.

    Article  Google Scholar 

  37. Pignatello R, Spadaro D, Vandelli MA, Forni F, Puglisi G. Characterization of the mechanism of interaction in ibuprofen–Eudragit RL100 coevaporates. Drug Dev Ind Pharm. 2004;30:277–88.

    Article  CAS  Google Scholar 

  38. Cory WC, Harris C, Martinez S. Accelerated degradation of ibuprofen in tablets. Pharm Dev Technol. 2010;15:636–43.

    Article  Google Scholar 

  39. Kararli TT, Needham TE, Seul CJ, Finnegan PM. Solid state interaction of magnesium oxide and ibuprofen to form a salt. Pharm Res. 1989;6:804–8.

    Article  CAS  Google Scholar 

  40. Sarisuta N, Lawanprasert P, Puttipipatkhachorn S, Srikummoon K. The influence of drug-excipient and drug-polymer interactions on butt adhesive strength of ranitidine hydrochloride film-coated tablets. Drug Dev Ind Pharm. 2006;32:463–71.

    Article  CAS  Google Scholar 

  41. Hartauer K, Arbuthnot G, Baertschi S, Johnson R, Luke W, Pearson N, Rickard E, Tingle C, Tsang P, Wiens R. Influence of peroxide impurities in povidone and crospovidone on the stability of raloxifene hydrochloride in tablets: identification and control of an oxidative degradation product. Pharm Dev Technol. 2000;5:303–10.

    Article  CAS  Google Scholar 

  42. Sekizaki H, Danjo K, Eguchi H, Yonezawa Y, Sunada H, Otsuka A. Solid state interaction of ibuprofen with polyvinyl-pyrrolidone. Chem Pharm Bull. 1995;43:988–92.

    Article  Google Scholar 

  43. Renu C, Kapoor V, Kumar A. Analytical techniques used to characterize drug-polyvinylpyrrolidone system in solid and liquid states. J Sci Ind Res. 2006;65:459–69.

    Google Scholar 

  44. Bogdanova S, Pajeva I, Nikolova P, Tsakovska I, Muller B. Interaction of pol(vinylpyrrolidone) with ibuprofen and naproxen: experimental and modeling studies. Pharm Res. 2005;22:806–15.

    Article  CAS  Google Scholar 

  45. Supabphol R, Stewart P. Aggregation during the dissolution of diazepam in interactive and granulated mixtures. Pharm Pharmacol Commun. 1996;2(5):233–6.

    CAS  Google Scholar 

Download references

Acknowledgements

I would like to thank Prof. Shahid Akbar (director of the research center, College of pharmacy, Qassim University) for his support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamzah M. Maswadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maswadeh, H.M. Incompatibility study of ibuprofen in ternary interactive mixture by using differential scanning calorimetry. J Therm Anal Calorim 123, 1963–1971 (2016). https://doi.org/10.1007/s10973-015-4773-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4773-z

Keywords

Navigation