Skip to main content
Log in

Experimental study of altitude and orientation effects on heat transfer over polystyrene insulation material

Ignition and combustion behaviors

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In order to reveal the altitude and orientation effects on the flammability behaviors of insulation material of polystyrene, a series of comparative lab-scale experiments was carried out in plain area of Hefei and plateau area of Lhasa. The piloted ignition time was identified for EPS and XPS with sample orientations of 0°, 15°, 30° and 90°. It was found that the piloted ignition time was shorter in Hefei than that in Lhasa for the same slab at the same inclination. Meanwhile, for EPS, due to the greater shrinkage, the ignition time was not influenced by thickness obviously, while for XPS, it was decreased with thickness for the receiving heat flux enhanced. The ignition time during flame spread case was longer than that in piloted ignition, attributed to the longer time of shrinking and melting. The combustion characteristics including pool fire length, flame length and mass loss rate were also explored. With the sample thickness increase, the maximum pool fire length and mass loss rate were both increased, leading to greater fire hazard. For the dripping and smoke influence, the slope of flame length against pyrolysis length at 90° would increase from slope1 to slope2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Mohsen MS, Akash BA. Some prospects of energy savings in buildings. Energy Convers Manag. 2001;42:307–15.

    Google Scholar 

  2. Castleton HF, Stovin V, Beck SBM, Davison JB. Green roofs; building energy savings and the potential for retrofit. Energy Build. 2010;42:1582–91.

    Article  Google Scholar 

  3. Torero JL, Simeoni A. Heat and mass transfer in fires: scaling laws, ignition of solid fuels and application to forest fires. Open Thermodyn J. 2014;4:145–55.

    Article  Google Scholar 

  4. Zhang Y, Huang XJ, Wang QS, Ji J, Sun JH, Yin Y. Experimental study on the characteristics of horizontal flame spread over XPS surface on plateau. J Hazard Mater. 2011;189:34–9.

    Article  CAS  Google Scholar 

  5. An W, Xiao H, Liew KM, Jiang L, Yan W, Zhou Y, Huang X, Sun J, Gao L. Downward flame spread over extruded polystyrene: effects of sample thickness, pressure, and sidewalls. J Therm Anal Calorim. 2015;119:1091–103.

    Article  CAS  Google Scholar 

  6. An W, Huang X, Wang Q, Zhang Y, Sun J, Liew KM, Wang H, Xiao H. Effects of sample width and inclined angle on flame spread across expanded polystyrene surface in plateau and plain environments. J Thermoplast Compos Mater. 2015;28(1):111–27.

    Article  CAS  Google Scholar 

  7. Jiang L, Xiao H, An W, Zhou Y, Sun J. Correlation study between flammability and the width of organic thermal insulation materials for building exterior walls. Energy Build. 2014;82:243–9.

    Article  Google Scholar 

  8. Jiang L, Xiao H, Zhou Y, An W, Yan W, He J, Sun J. Theoretical and experimental study of width effects on horizontal flame spread over extruded and expanded polystyrene foam surfaces. J Fire Sci. 2014;32(3):193–209.

    Article  Google Scholar 

  9. Huang XJ, Wang QS, Zhang Y, Yin Y, Sun JH. Thickness effect on flame spread characteristics of expanded polystyrene in different environments. J Thermoplast Compos Mater. 2011;25:427–38.

    Article  Google Scholar 

  10. Huang X, Sun J, Ji J, Zhang Y, Wang Q, Zhang Y. Flame spread over the surface of thermal insulation materials in different environments. Chin Sci Bull. 2011;56(15):1617–22.

    Article  CAS  Google Scholar 

  11. Cui Y, Cheng X, Gong L, Li L, Zhang H, Zhao Y. Effect of opening geometry on the heat transfer characteristics for external flames impinging on an exterior wall. Exp Heat Transf. 2014;27(3):213–30.

    Article  CAS  Google Scholar 

  12. Cheng X, Wang X, Mei P, Li L, Zhang H. Effect of ventilation condition on heat release rate of typical thermoplastics in compartment fire. J Appl Fire Sci. 2010;20(1):71–90.

    Article  Google Scholar 

  13. Tsai KC. Orientation effect on cone calorimeter test results to assess fire hazard of materials. J Hazard Mater. 2009;172:763–72.

    Article  CAS  Google Scholar 

  14. Xie QY, Zhang HP, Ye RB. Experimental study on melting and flowing behavior of thermoplastics combustion based on a new setup with a T-shape trough. J Hazard Mater. 2009;166:1321–5.

    Article  CAS  Google Scholar 

  15. Xie QY, Tu R, Wang N, Ma X, Jiang X. Experimental study on flowing burning behaviors of a pool fire with dripping of melted thermoplastics. J Hazard Mater. 2014;267(1–3):48–54.

    Article  CAS  Google Scholar 

  16. Chen X, Zhou Z, Li P, Zhou D, Wang J. Effects of sample orientation on pyrolysis and piloted ignition of wood. J Fire Sci. 2014;32(6):483–97.

    Article  CAS  Google Scholar 

  17. Dai JK, Delichatsios MA, Yang LZ. Piloted ignition of solid fuels at low ambient pressure and varying igniter location. Proc Combust Inst. 2013;34:2497–503.

    Article  CAS  Google Scholar 

  18. Wang XG, Cheng XD, Li LM, Lo S, Zhang HP. Effect of ignition condition on typical polymer’s melt flow flammability. J Hazard Mater. 2011;190(1–3):766–71.

    Article  CAS  Google Scholar 

  19. Ito A, Kashiwagi T. Characterization of flame spread over PMMA using holographic interferometer: sample orientation effects. Combust Flame. 1988;71:189–204.

    Article  CAS  Google Scholar 

  20. Zhang Y, Ji J, Wang QS, Huang XJ, Wang QH, Sun JH. Prediction of the critical condition for flame acceleration over wood surface with different sample orientations. Combust Flame. 2012;159(9):2999–3002.

    Article  CAS  Google Scholar 

  21. Hu L, Zhang Y, Yoshioka K, Izumo H, Fujita O. Flame spread over electric wire with high thermal conductivity metal core at different inclinations. Proc Combust Inst. 2015;35(3):2607–14.

    Article  CAS  Google Scholar 

  22. Harper CA. Handbook of building materials for fire protection. New York: McGraw-Hill; 2004.

    Google Scholar 

  23. Fernandez-Pello AC, Hirano T. Controlling mechanisms of flame spread. Combust Sci Technol. 1983;32:1–31.

    Article  CAS  Google Scholar 

  24. Zhang Y, Sun JH, Huang XJ, Chen XF. Heat transfer mechanisms in horizontal flame spread over wood and extruded polystyrene surfaces. Int J Heat Mass Transf. 2013;61:28–34.

    Article  CAS  Google Scholar 

  25. Zhou Y, Xiao H, Yan W, An W, Jiang L, Sun J. Horizontal flame spread characteristics of rigid polyurethane and molded polystyrene foams under externally applied radiation at two different altitudes. Fire Technol. 2014. doi:10.1007/s10694-014-0443-0.

    Google Scholar 

  26. Quintiere JG. Fundamentals of Fire Phenomena. The Atrium, Southern Gate, Chichester: Wiley; 2006.

    Book  Google Scholar 

  27. Churchill SW, Chu HHS. Correlating equations for laminar and turbulent free convection from a vertical plate. Int J Heat Mass Transf. 1975;18(11):1323–9.

    Article  CAS  Google Scholar 

  28. McAllister S, Fernandez-Pello C, Urban D, Ruff G. Piloted ignition delay of PMMA in space exploration atmospheres. Proc Combust Inst. 2009;32(2):2453–9.

    Article  CAS  Google Scholar 

  29. Ris JLD, Wu PK, Heskestad G. Radiation fire modeling. Proc Combust Inst. 2000;28:2751–9.

    Article  Google Scholar 

  30. Zarzecki M, Quintiere JG, Lyon RE, Rossmann T, Diez FJ. The effect of pressure and oxygen concentration on the combustion of PMMA. Combust Flame. 2013;160:1519–30.

    Article  CAS  Google Scholar 

  31. Delichatsios MA, Delichatsios MM. Critical mass pyrolysis rates for extinction in fires over solid materials. Fire Saf J. 1998;5:153–64.

    Article  Google Scholar 

  32. Rasbash DJ, Drysdale DD, Deepak D. Critical heat and mass transfer at pilot ignition and extinction of a material. Fire Saf J. 1986;10:1–10.

    Article  CAS  Google Scholar 

  33. Drysdale D. An introduction to fire dynamics. 3rd ed. New York: Wiley; 2011.

    Book  Google Scholar 

  34. Staggs JEJ, Nelson MI. A critical mass flux model for the flammability of thermoplastics. Combust Theory Model. 2001;5:399–427.

    Article  CAS  Google Scholar 

  35. Fereres S, Lautenberger C, Fernandez-Pello AC, Urban DL, Ruff GA. Understanding ambient pressure effects on piloted ignition through numerical modeling. Combust Flame. 2012;159(12):3544–53.

    Article  CAS  Google Scholar 

  36. Fereres S, Fernandez-Pello C, Urban DL, Ruff GA. Identifying the roles of reduced gravity and pressure on the piloted ignition of solid combustibles. Combust Flame. 2015;162(4):1136–43.

    Article  CAS  Google Scholar 

  37. Atreya A, Wichman IS. Heat and mass transfer during piloted ignition of cellulosic solids. J Heat Trans. 1989;111(3):719–25.

    Article  CAS  Google Scholar 

  38. Kishore K, Sankaralingam S. Effect of pressure on polymer ignition. J Fire Sci. 1986;4(2):94–9.

    Article  CAS  Google Scholar 

  39. Wang Y, Yang L, Zhou X, Dai J, Zhou Y, Deng Z. Experiment study of the altitude effects on spontaneous ignition characteristics of wood. Fuel. 2010;89(5):1029–34.

    Article  CAS  Google Scholar 

  40. Mindykowski P, Fuentes A, Consalvi JL, Porterie B. Piloted ignition of wildland fuels. Fire Saf J. 2011;46(1–2):34–40.

    Article  Google Scholar 

  41. Lyon RE, Quintiere JG. Criteria for piloted ignition of combustible solids. Combust Flame. 2007;151(4):551–9.

    Article  CAS  Google Scholar 

  42. Qie J, Yang L, Wang Y, Dai J, Zhou X. Experimental study of the influences of orientation and altitude on pyrolysis and ignition of wood. J Fire Sci. 2011;29(3):243–58.

    Article  Google Scholar 

  43. Delichatsios MA. Ignition times for thermally thick and intermediate conditions in flat and cylindrical geometries. Fire Saf Sci Proc 6th Int Symp. 1999;233–44.

  44. Quintiere JG. Surface flame spread, the sfpe handbook of fire protection engineering. 3rd ed. Quincy: NFPA; 2002.

    Google Scholar 

Download references

Acknowledgements

This study has been funded by the National Basic Research Program of China (973 Program, Grant. No. 2012CB719702), the National Natural Science Foundation of China (No. 51206002) and the open fund of State Key Laboratory of Fire Science (No. HZ2012-KF04).The authors gratefully acknowledge these supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinhua Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Liu, W., Zhao, J. et al. Experimental study of altitude and orientation effects on heat transfer over polystyrene insulation material. J Therm Anal Calorim 122, 281–293 (2015). https://doi.org/10.1007/s10973-015-4667-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4667-0

Keywords

Navigation