Skip to main content
Log in

Utilization of DSC, NIR, and NMR for wax appearance temperature and chemical additive performance characterization

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Wax crystallization processes are investigated using differential scanning calorimetry, near-infrared spectroscopy, and nuclear magnetic resonance spectroscopy. The performance of a chemical additive is assessed using calorimetry and NMR. Heat flows of model waxy oils are obtained using differential scanning calorimetry, providing the wax appearance temperature and crystallization profiles. The effect of cooling rate, wax content, asphaltene, and chemical additive on the wax appearance temperature is investigated. The wax appearance temperature increases with increasing wax contents. The wax appearance temperature decreases in the presence of chemical additive, effectively increasing the instantaneous supersaturation. Furthermore, near-infrared spectroscopy and nuclear magnetic resonance spectroscopy are utilized to determine wax appearance temperature. The NMR experiments quantify liquid and solid fractions at thermal equilibrium conditions, effectively circumventing the need for dynamic thermal techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

h :

Planck’s constant 6.626 × 10−34 (m2 kg s−1)

D:

Diffusion coefficient (m2 s)

E :

Energy level (m2 kg s−2)

H o :

External magnetic field strength (A m−1)

I :

Spin (dimensionless)

I o :

Integration constant (A m−1)

M :

Magnetization (A m−1)

M +0 :

Integration constant (A m−1)

T :

Characteristic relaxation time (s)

γ :

Magnetogyric ratio (A s kg−1)

v :

Velocity (m s−1)

ω :

Frequency (s−1)

▽:

Del operator

x, y, z :

Cartesian coordinates

References

  1. Elsharkawy AM, Al-Sahhaf TA, Fahim MA. Wax deposition from Middle East crudes. Fuel. 2000;79:1047–55.

    Article  CAS  Google Scholar 

  2. Singh P, Fogler HS, Nagarajan N. Prediction of the wax content of the incipient wax-oil gel in a pipeline: an application of the controlled-stress rheometer. J Rheol. 1999;43:1437–59.

    Article  CAS  Google Scholar 

  3. Wardhaugh LT, Boger DV. Flow characteristics of waxy crude oils: application to pipeline design. AIChE J. 1991;37:871–85.

    Article  CAS  Google Scholar 

  4. Davidsen S, Hamouda A. The wax content and the wax precipitation temperature simultaneously for crude oils at pipeline pressures. SPE International Symposium on Oilfield Chemistry. Houston, Texas; 1999. p. 459–473.

  5. Kruka VR, Cadena ER, Long TE. Cloud-point determination for crude oils. J. Pet. Technol. 1995;47:681–7.

    Article  CAS  Google Scholar 

  6. Kok MV, Letoffe JM, Claudy P, Martin D, Garcin M, Volle JL. Comparison of wax appearance temperatures of crude oils by differential scanning calorimetry, thermomicroscopy and viscometry. Fuel. 1996;75:787–90.

    Article  CAS  Google Scholar 

  7. Ronningsen HP, Bjorndal B, Hansen AB, Pedersen WB. Wax precipitation from North Sea crude oils: 1. Crystallization and dissolution temperatures, and Newtonian and non-Newtonian flow properties. Energy Fuels. 1991;5:895–908.

    Article  Google Scholar 

  8. Claudy P, Letoffe JM, Neff B, Damin B. Diesel fuels: determination of onset crystallization temperature, pour point and filter plugging point by differential scanning calorimetry. Correl Stand Test Methods Fuel. 1986;65:861–4.

    CAS  Google Scholar 

  9. Hansen AB, Larsen E, Pedersen WB, Nielsen AB, Rønningsen HP. Wax precipitation from North Sea crude oils. 3. Precipitation and dissolution of wax studied by differential scanning calorimetry. Energy Fuels. 1991;5:914–23.

    Article  Google Scholar 

  10. Jiang Z, Hutchinson JM, Imrie CT. Measurement of the wax appearance temperatures of crude oils by temperature modulated differential scanning calorimetry. Fuel. 2001;80:367–71.

    Article  CAS  Google Scholar 

  11. Ashbaugh HS, Radulescu A, Prud’homme RK, Schwahn D, Richter D, Fetters LJ. Interaction of paraffin wax gels with random crystalline/amorphous hydrocarbon copolymers. Macromolecules. 2002;35:7044–53.

    Article  CAS  Google Scholar 

  12. Bhat NV, Mehrotra AK. Measurement and prediction of the phase behavior of wax–solvent mixtures: significance of the wax disappearance temperature. Ind Eng Chem Res. 2004;43:3451–61.

    Article  CAS  Google Scholar 

  13. Holder GA, Winkler J. Wax crystallization from distillate fuels. J. Inst. Pet. 1965;51:228–52.

    CAS  Google Scholar 

  14. Paso K, Kallevik H, Sjöblom J. Measurement of wax appearance temperature using near-infrared (NIR) scattering. Energy Fuels. 2009;23:4988–94.

    Article  CAS  Google Scholar 

  15. Hoffmann R, Amundsen L. Influence of wax inhibitor on fluid and deposit properties. J Pet Sci Eng. 2013;107:12–7.

    Article  CAS  Google Scholar 

  16. Machado ALC, Lucas EF, González G. Poly(ethylene-co-vinyl acetate) (EVA) as wax inhibitor of a Brazilian crude oil: oil viscosity, pour point and phase behavior of organic solutions. J Pet Sci Eng. 2001;32:159–65.

    Article  CAS  Google Scholar 

  17. Taraneh JB, Rahmatollah G, Hassan A, Alireza D. Effect of wax inhibitors on pour point and rheological properties of Iranian waxy crude oil. Fuel Process Technol. 2008;89:973–7.

    Article  CAS  Google Scholar 

  18. Zhao Y, Paso K, Sjöblom J. Thermal behavior and solid fraction dependent gel strength model of waxy oils. J Therm Anal Calorim. 2014;117:403–11.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristofer Paso.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Paso, K., Norrman, J. et al. Utilization of DSC, NIR, and NMR for wax appearance temperature and chemical additive performance characterization. J Therm Anal Calorim 120, 1427–1433 (2015). https://doi.org/10.1007/s10973-015-4451-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4451-1

Keywords

Navigation