Skip to main content
Log in

Hydration properties of steel slag under autoclaved condition

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This paper investigated the hydration properties of steel slag under autoclaved condition (216 °C and 2 MPa). The results show that under autoclaved condition, besides C2S and C3S, f-CaO and the minerals containing MgO can react sufficiently. The morphologies of Ca(OH)2 produced by f-CaO are quite different from those produced by C2S and C3S. The Ca(OH)2 produced by f-CaO has a larger specific surface area or volume than that produced by C2S and C3S. The mean Ca–Si ratio of the C–S–H gel produced by steel slag is between 1.7 and 1.9, which is a little smaller than that produced by cement. The reaction of f-CaO tends to cause greater expansion than that of the minerals containing MgO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Shi CJ. Steel slag-its production, processing, characteristics, and cementitious properties. J Mater Civil Eng. 2004;16:230–6.

    Article  CAS  Google Scholar 

  2. Kourounis S, Tsivilis S, Tsakiridis PE, Papadimitriou GD, Tsibouki Z. Properties and hydration of blended cements with steelmaking slag. Cem Concr Res. 2007;37(6):815–22.

    Article  CAS  Google Scholar 

  3. Tsakiridis PE, Papadimitriou GD, Tsivilis S, Koroneos C. Utilization of steel slag for Portland cement clinker production. J Hazard Mater. 2008;152:805–11.

    Article  CAS  Google Scholar 

  4. Liu SH, Li LH. Influence of fineness on the cementitious properties of steel slag. J Therm Anal Calorim. 2014;117:629–34.

    Article  CAS  Google Scholar 

  5. Hu SG, Wang HX, Zhang GZ, Ding QJ. Bonding and abrasion resistance of geopolymeric repair material made with steel slag. Cem Concr Compos. 2008;30(3):239–44.

    Article  CAS  Google Scholar 

  6. Zhang TS, Yu QJ, Wei JX, Li JX, Zhang PP. Preparation of high performance blended cements and reclamation of iron concentrate from basic oxygen furnace steel slag. Resour Conserv Recycl. 2011;56(1):48–55.

    Article  Google Scholar 

  7. Zhang TS, Liu FT, Liu SQ, Zhou ZH, Cheng X. Factors influencing the properties of a steel slag composite cement. Adv Cem Res. 2008;20:145–50.

    Article  CAS  Google Scholar 

  8. Wang Q, Yan PY, Yang JW. Influence of steel slag on mechanical properties and durability of concrete. Constr Build Mater. 2013;47(10):1414–20.

    Article  Google Scholar 

  9. Wang Q, Yan PY, Han S. The influence of steel slag on the hydration of cement during the hydration process of complex binder. Sci China Technol Sci. 2011;54(2):388–94.

    Article  Google Scholar 

  10. Zhu X, Hou HB, Huang XQ, Zhou M, Wang WX. Enhance hydration properties of steel slag using grinding aids by mechanochemical effect. Constr Build Mater. 2012;29:476–81.

    Article  Google Scholar 

  11. Li JX, Yu QJ, Wei JX, Zhang TS. Structural characteristics and hydration kinetics of modified steel slag. Cem Concr Res. 2011;41:324–9.

    Article  CAS  Google Scholar 

  12. Yan PY, Mi GD, Wang Q. A comparison of early hydration properties of cement–steel slag binder and cement–limestone powder binder. J Therm Anal Calorim. 2014;115(1):193–200.

    Article  CAS  Google Scholar 

  13. Qian GR, Sun DD, Tay JH, Lai ZY, Xu GL. Autoclave properties of kirschsteinite-based steel slag. Cem Concr Res. 2002;32:1377–82.

    Article  CAS  Google Scholar 

  14. Yazıcı H, Deniz E, Baradan B. The effect of autoclave pressure, temperature and duration time on mechanical properties of reactive powder concrete. Constr Build Mater. 2013;42:53–63.

    Article  Google Scholar 

  15. Hossain KMA. Volcanic ash and pumice as cement additives: pozzolanic, alkali–silica reaction and autoclave expansion characteristics. Cem Concr Res. 2005;35:1141–4.

    Article  CAS  Google Scholar 

  16. Saphouvong K, Saito T, Otsuki N, Yumoto T. Corrosion of steel bars in autoclaved concrete pile containing γ-2CaO·SiO2 with an accelerated carbonation curing submerged in the real marine environment. J Soc Mater Sci. 2012;61(3):299–307.

    Article  CAS  Google Scholar 

  17. Li H, Zhao FQ, Li Q, Fu LL, Liu SJ. Autoclave brick from semi-dry desulfuration ash. Adv Mater Res. 2011;846:217–8.

    Article  Google Scholar 

  18. Connan H, Ray A, Thomas P, Guerbois JP. Effect of autocalving temperature on calcium silicate-based building products containing clay-brick waste. J Therm Anal Calorim. 2012;88:115–9.

    Article  Google Scholar 

  19. Qian GR, Sun DD, Tay JH, Lai ZY. Hydrothermal reaction and autoclave stability of Mg bearing RO phase in steel slag. Br Ceram Trans. 2002;101(4):159–64.

    Article  CAS  Google Scholar 

  20. Zhang TS, Yu QJ, Wei JX, Li JX. Investigation on mechanical properties, durability and micro-structural development of steel slag blended cements. J Therm Anal Calorim. 2012;110:633–9.

    Article  CAS  Google Scholar 

  21. Mindness S, Young JF. Concrete. New Jersey: Englewood Cliffs; 1981. p. 93–4.

    Google Scholar 

  22. Gao PW, Wu SX, Lu XL, Deng M, Lin PH, Wu ZR, Tang MS. Soundness evaluation of concrete with MgO. Constr Build Mater. 2007;21(1):132–8.

    Article  Google Scholar 

  23. Ali MM, Mullick AK. Volume stabilization of high MgO cement: effect of curing conditions and fly ash addition. Cem Concr Res. 1998;28:1585–94.

    Article  CAS  Google Scholar 

  24. Taylor R, Richardson IG, Brydson RMD. Composition and microstructure of 20-year-old ordinary cement-ground granulated blast-furnace slag blends containing 0 to 100% slag. Cem Concr Res. 2010;40:971–83.

    Article  CAS  Google Scholar 

  25. Richardson IG. The nature of C–S–H in hardened cements. Cem Concr Res. 1999;29:1131–47.

    Article  CAS  Google Scholar 

  26. Escalante-Garcia JI, Mendoza G, Sharp JH. Indirect determination of the Ca–Si ratio of the C–S–H gel in Portand cements. Cem Concr Res. 1999;29:1999–2003.

    Article  CAS  Google Scholar 

  27. Gutteridge WA, Dalziel JA. Effect of a secondary component on the hydration of Portland cement, Part I: a fine non-hydraulic filler. Cem Concr Res. 1990;20:778–82.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the support from the State Key Laboratory of High Performance Civil Engineering Materials (2011CEM005) and Tsinghua University Initiative Scientific Research Program (20131089239).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Shi, M. & Zhang, Z. Hydration properties of steel slag under autoclaved condition. J Therm Anal Calorim 120, 1241–1248 (2015). https://doi.org/10.1007/s10973-015-4397-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4397-3

Keywords

Navigation