Skip to main content
Log in

Water and hydrogen release from perlites and opal

A study with a directly coupled evolved gas analyzing system (DEGAS)

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The dehydration of two specimens of perlite from Pálháza (Hungary) and from Borovitza (Bulgaria) along with a specimen of Australian precious opal has been investigated by temperature controlled high-vacuum degassing experiments (DEGAS). Dehydration results in the loss of water over a wide range of temperatures due to the presence of both molecular and bound (silanol, Si–OH) water. A surprising observation is that hydrogen (H2) is also released. The hydrogen is observed to be released from both perlites and opal and both by diffusional processes and through the sudden explosive, bursting of inclusions which produce sharp spikes in the MS data. The origin of the hydrogen cannot be explained by a simple statistical distribution of the silanol species in the vitreous matrix; rather, it is more likely to be associated with an inverse-micellar decomposition of silanol species. Alternate sources of hydrogen such as meteoric waters or specific genetic origins based on the perlite or opal location and formation are discounted as the hydrogen release is found to be independent of CO2 and SO2 evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Roulia M, Chassapis K, Kapoutsis JA, Kamitsos EI, Savvidis T. Influence of thermal treatment on the water release and the glassy structure of perlite. J Mat Sci. 2006;41:5870–81.

    Article  CAS  Google Scholar 

  2. Ivanova VP, Kasatov BK, Krasavina TN, Rozinova EL. Termičeskij analiz mineralov I gornyh porod. Leningrad: Nedra; 1974. p. 399.

    Google Scholar 

  3. Földvari M. Handbook of thermogravimetric system of minerals and its use in geological practice. Budapest: Geological Institute of Hungary; 2011. p. 36–136.

    Google Scholar 

  4. Lehman H, Rossler M. A Contribution to the nature of water binding in perlite, in thermal analysis. Proceedings of 4th ICTA, Budapest; 1974. vol. 2, p. 619–628.

  5. Kužvart M. Industrial minerals and rocks. Praha: Academia; 1984. p. 320–1.

    Google Scholar 

  6. Thomas PS, Guerbois JP, Smallwood A. Low temperature DSC characterisation of water in opal. J Therm Anal Calorim. 2013;113:1255–60.

    Article  CAS  Google Scholar 

  7. Bagdassarov N, Ritter F, Yanev Y. Kinetics of perlite glasses degassing: TG and DSC analysis. Glass Sci Technol. 1999;72:277–90.

    CAS  Google Scholar 

  8. Heide K, Földvari M. High temperature mass spectrometric gas-release studies of kaolinite Al2[Si2O5(OH)4] decomposition. Thermochim Acta. 2006;446:106–12.

    Article  CAS  Google Scholar 

  9. Heide K, Földvári M, Zelenka T, Heide G. Gas release from Hungarian perlites. In: 6th international conference and exhibition on perlite, Budapest. 2008. pp. 95–106.

  10. Földvari M. Measurement of different water species in minerals by means of thermal derivatography. In: Smykatz-Kloss W, Warne SSJ. Thermal analysis in the geosciences. Lecture Notes in Earth Sciences Nr. 38, Springer Verlag. 1991. pp. 84–100.

  11. Thomas P, Šesták J, Heide K, Füglein E, Šimon P. Thermophysical properties of natural glasses at the extremes of the thermal history profile. In: Šesták J, Mareš JJ, Hubik P, editors. Hot topics in thermal analysis and calorimetry, vol. 8. Dordrecht: Springer; 2011. p. 311–25.

    Google Scholar 

  12. Heide K, Woermann E, Ulmer G. Volatiles in pillows of the Mid-Ocean-Ridge-Basalt (MORB) and vitreous basaltic rims. Chem Erde. 2008;68:353–68.

    Article  CAS  Google Scholar 

  13. Heide K. Zur thermischen Zersetzung des Gipses CaS04 · 2H20. Silikattechnik. 1969;20:232–43.

    CAS  Google Scholar 

  14. Zotov N, Dimitrov V, Yanev Y. X-ray radial distribution function analysis of acid volcanic glasses from the Eastern Rhodopes, Bulgaria. Phys Chem Miner. 1989;16:774–82.

    Article  CAS  Google Scholar 

  15. Yanev Y. Petrology of Eastern Rhodopes paleogene acid volcanics, Bulgaria. Acta Vulcanologia. 1998;10:265–77.

    Google Scholar 

  16. Yanev Y. Cesium-bearing perlites from Borovitza Caldera in the Eastern Rhodopes, Bulgaria. Petrology. 1994;2:82–97.

    Google Scholar 

  17. Zelenka TA. pálházai és környéki perlitek földtana.(Geology of the perlites in the Pálháza Region). In: 6th international conference and exhibition on perlite, Budapest. 2008. pp. 51–76.

  18. Langer K, Florke OW. Near infrared absorption spectra (4,000–9,000 cm−1) of opals and the role of water in these SiO2.nH2O minerals. Fortschr Miner. 1974;52:17–51.

    CAS  Google Scholar 

  19. Brown LD, Ray AS, Thomas PS. 29Si and 27Al NMR study of amorphous and paracrystalline opals from Australia. J Non-Cryst Sol. 2003;332:242–8.

    Article  CAS  Google Scholar 

  20. Brown LD, Ray AS, Thomas PS. Elemental analysis of Australian amorphous opals by laser-ablation ICP-MS. Neues Jahrbuch für Mineralogie-Monatshefte. 2004;2004:411–24.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. S. Thomas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomas, P.S., Heide, K. & Földvari, M. Water and hydrogen release from perlites and opal. J Therm Anal Calorim 120, 95–101 (2015). https://doi.org/10.1007/s10973-014-4336-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-4336-8

Keywords

Navigation