Skip to main content
Log in

Synthesis, spectral, thermal, magnetic and biological characterization of Co(II), Ni(II), Cu(II) and Zn(II) complexes with a Schiff base bearing a 1,2,4-triazole pharmacophore

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A series of complexes [M2L2Cl2(OH2) n mH2O (M: Co, n = 0, m = 1; M: Ni, n = 2, m = 0; M: Cu, n = 0, m = 0; M: Zn, n = 0, m = 1; HL·H2O: 2-[(E)-1H-1,2,4-triazol-3-ylimino)methyl]phenol) were synthesised and characterised. The features of complexes have been assigned from microanalytical, thermal, IR, UV–Vis-NIR, EPR spectroscopy as well as magnetic data at room temperature. The electrochemical behaviour of the complexes was also investigated by cyclic voltammetry. The simultaneous TG/DTA experiments of these in flowing air atmosphere evidenced the occurrence of water or chloride as well as oxidative degradation of the Schiff base. The final product of decomposition was the most stable metal oxide as powder X-ray diffraction indicates. The complexes exhibited an improved antibacterial activity in comparison with the ligand towards both planktonic as well as biofilm embedded cells. The Cu(II) and Zn(II) complexes exhibited an inhibitory effect on the tumor cell lines growth, as revealed by the increased G2 phase and percentage of apoptotic/necrotic cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science. 1999;284:1318–22.

    Article  CAS  Google Scholar 

  2. Lazar V. Quorum sensing in biofilms—how to destroy the bacterial citadels or their cohesion/power? Anaerobe. 2011;17:280–5.

    Article  Google Scholar 

  3. Glinel K, Thebault P, Humblot V, Pradier CM, Jouenne T. Antibacterial surfaces developed from bio-inspired approaches. Acta Biomater. 2012;8:1670–84.

    Article  CAS  Google Scholar 

  4. Tournu H, Van Dijck P. Candida Biofilms and the host: models and new concepts for eradication. Intern J Microbiol. 2012;2012:ID. 845352 doi:10.1155/2012/845352.

  5. Potts KT. The Chemistry of 1,2,4-Triazoles. Chem Rev. 1961;61:87–127.

    Article  CAS  Google Scholar 

  6. Agalave SG, Maujan SR, Pore VS. Click chemistry: 1,2,3-triazoles as pharmacophores. Chem Asian J. 2011;6:2696–718.

    Article  CAS  Google Scholar 

  7. Whiting M, Muldoon J, Lin Y-C, Silverman SM, Lindstrom W, Olson AJ, Kolb HC, Finn MG, Sharpless KB, Elder JH, Fokin VV. Inhibitors of HIV-1 protease by using in situ click chemistry. Angew Chem Int Ed. 2006;45:1435–9.

    Article  CAS  Google Scholar 

  8. Zhou C-H, Wang Y. Recent researches in triazole compounds as medicinal drugs. Curr Med Chem. 2012;19:239–80.

    Article  CAS  Google Scholar 

  9. Sun N, Xie Y, Sheng C, Cao Y, Zhang W, Chen H, Fan G. In vivo pharmacokinetics and in vitro antifungal activity of iodiconazole, a new triazole, determined by microdialysis sampling. Int J Antimicrob Agents. 2013;41:229–35.

    Article  CAS  Google Scholar 

  10. Kleemann A, Engel J. Pharmaceutical Substances. Stuttgart: Thieme Verlag; 1999.

    Google Scholar 

  11. Kharb R, Sharma PC, Yar MS. Pharmacological significance of triazole scaffold. J Enz Inhib Med Chem. 2011;26:1–21.

    Article  CAS  Google Scholar 

  12. Sahoo S, Veliyath SK, Mahendra Kumar CB. Review on substituted 1,2,4-triazoles as potent antifungal and antibacterial agents. Int J Res Pharm Sci. 2012;3:326–33.

    Google Scholar 

  13. Wahi AK, Singh AK, Singh A. Design and synthesis of novel Schiff’s bases having N-(4H-1,2,4-triazole-4-yl)benzamido moiety as antimicrobial and anti-inflammatory agents. Pharm Chem. 2011;3:146–54.

    CAS  Google Scholar 

  14. Chandramouli C, Shivanand MR, Nayanbhai TB, Bheemachari B, Udupi RH. Synthesis and biological screening of certain new triazole schiff bases and their derivatives bearing substituted benzothiazole moiety. J Chem Pharm Res. 2012;4:1151–9.

    CAS  Google Scholar 

  15. Sumangala V, Poojary B, Chidananda N, Arulmoli T, Shenoy S. Synthesis and biological evaluation of some Schiff bases of 4-amino-5-(4-methylsulfonyl)benzyl-2,4-dihydro-3H-[1, 2, 4]-triazole-3-thione. Med Chem Res. 2013;22:2921–8.

    Article  CAS  Google Scholar 

  16. Murthy YLN, Govindh B, Diwakar BS, Nagalakshmi K, Rao KVR. Synthesis and bioevaluation of Schiff and Mannich bases of isatin derivatives with 4-amino-5-benzyl-2,4-dihydro-3H-1,2,4-triazole-3-thione. Med Chem Res. 2012;21:3104–10.

    Article  CAS  Google Scholar 

  17. Zheng Y, Xue W, Guo Q, Lu P, Wang Z, Yuan K. Synthesis and antitumor activity of 5,6-2H-[1,2,4]-triazolo[3,4-b][1,3,4]thiadiazine derivatives. Chin J Org Chem. 2011;31:912–6.

    Google Scholar 

  18. Serbest K, Özen A, Ünver Y, Er M, Değirmencioğlu I, Sancak K. Spectroscopic and theoretical study of 1,2,4-triazole-3-one based salicylaldimine complexes and evaluation of superoxide-scavenging properties. J Mol Struct. 2009;922:1–10.

    Article  CAS  Google Scholar 

  19. Ma L, Lu L, Zhu M, Wang Q, Li Y, Xing S, Fu X, Gao Z, Dong Y. Mononuclear copper(II) complexes with 3,5-substituted-4-salicylidene-amino-3,5-dimethyl-1,2,4-triazole: Synthesis, structure and potent inhibition of protein tyrosine phosphatases. Dalton Trans. 2011;40:6532–40.

    Article  CAS  Google Scholar 

  20. Kulkarni NV, Budagumpi S, Kurdekar GS, Revankar VR, Didagi S. Anticonvulsant activity and toxicity evaluation of Cu(II) and Zn(II) metal complexes derived from triazole-quinoline ligands. Chem Pharm Bull. 2010;58:1569–75.

    Article  CAS  Google Scholar 

  21. Bagihalli GB, Avaji PG, Patil SA, Badami PS. Synthesis, spectral characterization, in vitro antibacterial, antifungal and cytotoxic activities of Co(II), Ni(II) and Cu(II) complexes with 1,2,4-triazole Schiff bases. Eur J Med Chem. 2008;43:2639–49.

    Article  CAS  Google Scholar 

  22. Reddy V, Patil N, Reddy T, Angadi SD. Synthesis, characterization and biological activities of Cu(II), Co(II), Ni(II), Mn(II) and Fe(III) complexes with Schiff base derived from 3-(4-chlorophenoxymethyl)-4-amino-5-mercapto-1,2,4-triazole. Eur J Chem. 2008;5:529–38.

    CAS  Google Scholar 

  23. Zabin SA. Synthesis and antimicrobial studies of Cu(II), Ni(II) and Zn(II) Schiff base complexes derived from substituted 1,2,4-triazoles and heteroaromatic aldehydes. Asian J Chem. 2011;23:4067–71.

    CAS  Google Scholar 

  24. Chohan ZH, Hanif M. Synthesis and characterization of biologically active new Schiff bases containing 3-functionalized 1,2,4-triazoles and their zinc(II) complexes: crystal structure of 4-bromo-2-[(E)-(1H-1,2,4-triazol-3-ylimino)-methyl]phenol. Appl Organomet Chem. 2011;25:753–60.

    Article  CAS  Google Scholar 

  25. Creaven BS, Devereux M, Foltyn A, McClean S, Rosair G, Thangella VR, Walsh M. Quinolin-2(1H)-one-triazole derived Schiff bases and their Cu(II) and Zn(II) complexes: possible new therapeutic agents. Polyhedron. 2010;29:813–22.

    Article  CAS  Google Scholar 

  26. Altalbawy FMA, Mohamed GG, Sayed MAEE, Mohamed MIA. Synthesis, characterization, and biological activity of some transition metal complexes with Schiff base ligands derived from 4-amino-5-phenyl-4H-1,2,4-triazole-3-thiol and salicaldehyde. Monatsh Chem. 2012;143:79–89.

    Article  CAS  Google Scholar 

  27. Hanif M, Chohan ZH. Synthesis, spectral characterization and biological studies of transition metal(II) complexes with triazole Schiff bases. Appl Organomet Chem. 2012;27:36–44.

    Article  Google Scholar 

  28. Hanif M, Chohan ZH. Design, spectral characterization and biological studies of transition metal(II) complexes with triazole Schiff bases. Spectrochim Acta A Mol Biomol Spectrosc. 2013;104:468–76.

    Article  CAS  Google Scholar 

  29. McCutcheon AR, Ellis SM, Hancock RE, Towers GH. Antibiotic screening of medicinal plants of the British Columbian native peoples. J Ethnopharmacol. 1992;37:213–23.

    Article  CAS  Google Scholar 

  30. Marutescu L, Limban C, Chifiriuc MC, Missir A-V, Chirita IC, Caproiu MT. Studies on the antimicrobial activity of new compounds containing thiourea function. Biointerface Res Appl Chem. 2011;1:236–41.

    CAS  Google Scholar 

  31. Olar R, Badea M, Marinescu D, Chifiriuc MC, Bleotu C, Grecu MN, Iorgulescu EE, Lazar V. N, N-dimethylbiguanide complexes displaying low cytotoxicity as potential large spectrum antimicrobial agents. Eur J Med Chem. 2010;45:3027–34.

    Article  CAS  Google Scholar 

  32. Awtar K. Rapid flow cytofluorometric analysis of mammalian cell cycle by propidium iodide staining. J Cell Biol. 1975;66:188–93.

    Article  Google Scholar 

  33. Hawley RG, Hawley TS. Flow cytometry protocols. 2nd ed. New York: Humana Press; 2004.

    Book  Google Scholar 

  34. Hassan FSM, Mohamed AD, Gabr AA, Gad AA. The preparation and characterization of divalent copper, nickel, cobalt and manganese complexes of some Schiff base ligands. AU. Sci. 1994;6:125–34.

  35. Singh K, Kumar Y, Puri P, Kumar M, Sharma C. Cobalt, nickel, copper and zinc complexes with 1,3-diphenyl-1H-pyrazole-4-carboxaldehyde Schiff bases: antimicrobial, spectroscopic, thermal and fluorescence studies. Eur J Med Chem. 2012;52:313–21.

    Article  CAS  Google Scholar 

  36. Abdel-Latif SA, Hassib HB, Issa YM. Studies on some salicylaldehyde Schiff base derivatives and their complexes with Cr(III), Mn(II), Fe(III), Ni(II) and Cu(II). Spectrochim Acta A. 2007;67:950–7.

    Article  CAS  Google Scholar 

  37. Rathore K, Singh RKR, Singh HB. Structural, spectroscopic and biological aspects of O, N- donor Schiff base ligand and its Cr(III), Co(II), Ni(II) and Cu(II) complexes synthesized through green chemical approach. E-J Chem. 2010;7:566–72.

    Article  Google Scholar 

  38. Nakamoto K. Infrared and Raman spectra of inorganic and coordination compounds. New York: Wiley; 1986.

    Google Scholar 

  39. Chohan ZH, Hanif M. Syhthesis and characterization of biologically active new Schiff bases containing 3-functionalized 1,2,4-triazoles and their zinc(II) complexes: crystal structure of 4-bromo-2-[(E)-(1H-1,2,4-triazol-3-ylimino)-methyl]phenol. Appl Organomet Chem. 2011;25:753–60.

    Article  CAS  Google Scholar 

  40. Lever ABP. Inorganic electronic spectroscopy, Amsterdam, London. New York: Elsevier; 1986.

    Google Scholar 

  41. Gispert JR. Coordination chemistry. Weinheim: Wiley; 2008.

    Google Scholar 

  42. Kokoszka GF, Duerst RW. EPR studies of exchange coupled metal ions. Coord Chem Rev. 1970;5:209–44.

    Article  CAS  Google Scholar 

  43. Zanello P. Inorganic electrochemistry: theory, practice and application. Cambridge: Royal Society of Chemistry; 2003.

    Google Scholar 

  44. Tatucu M, Rotaru P, Rau I, Spinu C, Kriza A. Thermal behaviour and spectroscopic investigation of some methyl 2-pyridyl ketone complexes. J Therm Anal Calorim. 2010;100:1107–14.

    Article  CAS  Google Scholar 

  45. Vecchio S, Materazzi S, Wo LW, De Angelis Curtis S. Thermoanalytical study of imidazole-substituted coordinationcompounds: cu(II)-and Zn(II)-complexes of bis(1-methylimidazol-2-yl)ketone. Thermochim Acta. 2013;568:31–7.

    Article  CAS  Google Scholar 

  46. Zianna A, Vecchio S, Gdaniec M, Czapik A, Hatzidimitriou A, Lalia-Kantouri M. Synthesis, thermal analysis, and spectroscopic and structural characterizations of zinc(II) complexes with salicylaldehydes. J Therm Anal Calorim. 2013;112:455–64.

    Article  CAS  Google Scholar 

  47. Bujdošová Z, Gyoryová K, Mudroňová D, Hudecová D, Kovářová J. Thermoanalytical investigation and biological properties of zinc(II) 4-chloro-and 5-chlorosalicylates with N-donor ligands. J Therm Anal Calorim. 2012;110:167–76.

    Article  Google Scholar 

  48. Findoráková L, Gyoryová K, Hudecová D, Mudronňvá D, Kovárŏvá J, Homzová K, El-Dien FAN. Thermal decomposition study and biological characterization of zinc(II) 2-chlorobenzoate complexes with bioactive ligands. J Therm Anal Calorim. 2013;111:1771–81.

    Article  Google Scholar 

  49. Carvalho CT, Caires FJ, Lima LS, Ionashiro M. Thermal investigation of solid 2-methoxycinnamylidenepyruvate of some bivalent transition metal ions. J Therm Anal Calorim. 2012;107:863–8.

    Article  CAS  Google Scholar 

  50. Yousef TA. Abu El-Reash, El-Gammal OA, Bedier RA. Co(II), Cu(II), Cd(II), Fe(II) and U(VI) complexes containing a NSNO donor ligand: synthesis, characterization, optical band gap, in vitro antimicrobial and DNA cleavage studies. J Mol Struct. 2012;1029:149–60.

    Article  CAS  Google Scholar 

  51. Holló B, Krstić M, Sovilj SP, Pokol G, Mészáros Szécsényi K. Thermal decomposition of new ruthenium(II) complexes containing N-alkylphenothiazines. J Therm Anal Calorim. 2011;105:27–32.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodica Olar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 147 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calu, L., Badea, M., Chifiriuc, M.C. et al. Synthesis, spectral, thermal, magnetic and biological characterization of Co(II), Ni(II), Cu(II) and Zn(II) complexes with a Schiff base bearing a 1,2,4-triazole pharmacophore. J Therm Anal Calorim 120, 375–386 (2015). https://doi.org/10.1007/s10973-014-3970-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-3970-5

Keywords

Navigation