Skip to main content
Log in

Thermal, spectral, magnetic and biologic characterization of new Ni(II), Cu(II) and Zn(II) complexes with a hexaazamacrocyclic ligand bearing ketopyridine moieties

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

New species of type MLCl2·nH2O (M:Ni, n = 4.5; M:Cu, n = 0 and M:Zn, n = 0; L: (4,5-11,12)-bisphenylen-1,3,6,8,10,13-hexaazacyclotetradecan-bis(pyrid-3-yl)methanone resulted by 1,2-phenylendiamine, nicotinamide and formaldehyde template condensation) were synthesised. The complex features have been assigned from microanalytical, IR, UV–Vis, 1H NMR and EPR spectra as well as magnetic data at room temperature. Simultaneous TG/DTA and TG/DSC/EGA measurements were performed in order to evidence the thermal decomposition pattern and the nature of the gaseous products formed in each step. Processes as water and chloride elimination as well as fragmentation and oxidative degradation of the organic ligand were observed during the thermal decomposition. The final product of decomposition was metal(II) oxide. The obtained complexes exhibited an improved antimicrobial activity in comparison with the ligand, both on planktonic and biofilm embedded cells, as well as a low cytotoxicity. The microbicidal and anti-biofilm activity of the complex (3) against the Gram-negative strains recommend it for the development of new antimicrobial solutions for these emerging multidrug-resistant bacteria causing life-threatening infectious diseases often untreatable with the existing antimicrobial agents. The assay on HEp-2 cells indicates a low cytotoxicity for all complexes. The plethysmometry assays indicate an anti-inflammatory activity for Cu(II) complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Mewis RE, Archibald SJ. Biomedical applications of macrocyclic ligand complexes. Coord Chem Rev. 2010;254:1686–712.

    Article  CAS  Google Scholar 

  2. Srour H, Le Maux P, Chevance S, Simonneaux G. Metal-catalyzed asymmetric sulfoxidation, epoxidation and hydroxylation by hydrogen peroxide. Coord Chem Rev. 2013;257:3030–50.

    Article  CAS  Google Scholar 

  3. Costamagna J, Ferraudi G, Matsuhiro B, Campos-Vallette M, Canales J, Villagran M, Vargas J, Aguirre MJ. Complexes of macrocycles with pendant arms as models for biological molecules. Coord Chem Rev. 2000;196:125–64.

    Article  CAS  Google Scholar 

  4. Gerbeleu NV, Arion VB, Burgess John P. Template synthesis of macrocyclic compounds. Weinheim: Wiley; 1994.

    Google Scholar 

  5. Wainwright KP. Synthetic and structural aspects of the chemistry of saturated polyaza macrocyclic ligands bearing pendant coordinating groups attached to nitrogen. Coord Chem Rev. 1997;166:35–90.

    Article  CAS  Google Scholar 

  6. Lindoy LF. The transition metal ion chemistry of linked macrocyclic ligands. Adv Inorg Chem. 1998;45:75–125.

    Article  CAS  Google Scholar 

  7. McKee V. Macrocyclic complexes as models for nonporphine metalloproteins. Adv Inorg Chem. 1993;40:323–410.

    Article  Google Scholar 

  8. Parkin G. Synthetic analogues relevant to the structure and function of zinc enzymes. Chem Rev. 2004;104:699–767.

    Article  CAS  Google Scholar 

  9. Albedyhl S, Averbuch-Pouchot MT, Belle C, Krebs B, Pierre JL, Saint-Aman E, Torelli S. Dinuclear Zinc(II)–Iron(III) and Iron(II)–Iron(III) complexes as models for purple acid phosphatases. Eur J Inorg Chem. 2001;6:1457–64.

    Article  Google Scholar 

  10. Tiné MR. Cobalt complexes in aqueous solutions as dioxygen carriers. Coord Chem Rev. 2012;256:316–27.

    Article  Google Scholar 

  11. de Alwis C, Crayston JA, Cromie T, Eisenblätter T, Hay RW, Lampeka YD, Tsymbal LV. Cyclic voltammetry study of the electrocatalysis of carbon dioxide reduction by bis(polyazamacrocyclic) nickel complexes. Electrochim Acta. 2000;45:2061–74.

    Article  Google Scholar 

  12. Salavati-Niasari M, Davar F. Synthesis, characterization and catalytic activity of copper(II) complexes of 14-membered macrocyclic ligand; 3,10-dialkyl-dibenzo-1,3,5,8,10,12-hexaazacyclotetradecanel/zeolite encapsulated nanocomposite materials. Inorg Chem Commun. 2006;9:304–9.

    Article  CAS  Google Scholar 

  13. Mochizuki K, Suzuki M. Photochemical dehalogenation mediated by macrocyclic nickel(II) complexes. Inorg Chem Commun. 2011;14:902–5.

    Article  CAS  Google Scholar 

  14. Salavati-Niasari M. 16-Membered pentaaza bis(macrocyclic) nickel(II) complexes containing aromatic nitrogen–nitrogen linkers, [Ni([16]aneN5)]2R}(ClO4)4: synthesis, characterization and catalytic oxidation of cyclohexene with molecular oxygen. J Mol Catal A Chem. 2007;272:207–12.

    Article  CAS  Google Scholar 

  15. Salavati-Niasari M, Bazarganipour M. Bis(macrocyclic) copper(II) complexes containing aromatic nitrogen–nitrogen linkers produced by in situ one pot template condensation reaction (IOPTCR): synthesis, characterization and catalytic oxidation of tetrahydrofuran. Inorg Chem Commun. 2006;9:332–6.

    Article  CAS  Google Scholar 

  16. Caravan P, Ellison JJ, McMurry TJ, Lauffer RB. Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications. Chem Rev. 1999;99:2293–352.

    Article  CAS  Google Scholar 

  17. Dearling JLJ, Voss SD, Dunning P, Snay E, Fahey F, Smith SV, Huston JS, Meares CF, Treves ST, Packard AB. Imaging cancer using PET—the effect of the bifunctional chelator on the biodistribution of a 64Cu-labeled antibody. Nucl Med Biol. 2011;38:29–38.

    Article  CAS  Google Scholar 

  18. Thunus L, Lejeune R. Overview of transition metal and lanthanide complexes as diagnostic tools. Coord Chem Rev. 1999;184:125–55.

    Article  Google Scholar 

  19. Volkert WA, Hoffmann TJ. Therapeutic radiopharmaceuticals. Chem Rev. 1999;99:2269–92.

    Article  CAS  Google Scholar 

  20. Nirmala CG, Rahiman AK, Sreedaran S, Jegadeesh R, Raaman N, Narayanan V. Synthesis, characterization, crystal structure and antimicrobial activities of new trans N, N-substituted macrocyclic dioxocyclam and their copper(II) and nickel(II) complexes. Polyhedron. 2011;30:106–13.

    Article  CAS  Google Scholar 

  21. Mathur S, Tabassum S. Synthesis and characterization of a new macrocyclic copper(II) complex with an N-Glycosidic pendant arm: in vitro cytotoxicity and binding studies with calfthymus DNA. Chem Biodivers. 2006;3:312–25.

    Article  CAS  Google Scholar 

  22. Ronconi L, Sadler PJ. Using coordination chemistry to design new medicines. Coord Chem Rev. 2007;251:1633–48.

    Article  CAS  Google Scholar 

  23. Arjmand F, Aziz M, Chauhan M. Synthesis, spectroscopic studies of new water-soluble Co(II) and Cu(II) macrocyclic complexes of 4,15-bis(2-hydroxyethyl)-2,4,6,13,15,17-hexaazatricyclodocosane: their interaction studies with calf thymus DNA and guanosine 50 monophosphate. J Incl Phenom Macrocycl Chem. 2008;61:265–78.

    Article  CAS  Google Scholar 

  24. Salavati-Niasari M, Najafian H. One-pot template synthesis and properties of Ni(II) complexes of 16-membered hexaaza macrocycles. Polyhedron. 2003;22:2633–8.

    Article  CAS  Google Scholar 

  25. Núńez C, Bastida R, Macías A, Aldrey A, Valencia L. Synthesis of metal complexes with a novel ethyldioxolane pendant-arm hexaazamacrocyclic ligand. Polyhedron. 2010;29:126–33.

    Article  Google Scholar 

  26. Organo VG, Filatov AS, Quartararo JS, Friedman ZM, Rybak-Akimova EV. Nickel(II) complexes of monofunctionalized pyridine-azamacrocycles: synthesis, structures, pendant arm “on-off” coordination equilibria, and peroxidase-like activity. Inorg Chem. 2009;48:8456–68.

    Article  CAS  Google Scholar 

  27. Lee Y-T, Kang S-G. One-pot reaction involving two different amines and formaldehyde leading to the formation of poly(macrocyclic) Cu(II) complexes. Bull Korean Chem Soc. 2012;33:2517–22.

    Article  CAS  Google Scholar 

  28. Busto E, González-Álvarez A, Gotor-Fernández V, Alfonso I, Gotor V. Optically active macrocyclic hexaazapyridinophanes decorated at the periphery: synthesis and applications in the NMR enantiodiscrimination of carboxylic acids. Tetrahedron. 2010;66:6070–7.

    Article  CAS  Google Scholar 

  29. Salavati-Niasari M, Davar F. Synthesis and characterization of nickel(II) complexes of 14-membered hexaaza macrocyclic ligands "3,10-dialkyl-dibenzo-1,3,5,8,10,12-hexaazacyclotetradecane” produced by the in situ one-pot template reaction of formaldehyde and 1,2-phenylenediamine with alkyl or benzyl amine in the presence of the nickel(II) ion. Polyhedron. 2006;25:2127–34.

    Article  CAS  Google Scholar 

  30. Licchelli M, Milani M, Pizzo S, Poggi A, Sacchi D, Boiocchi M. Synthesis of novel diazacyclam copper(II) complexes by template reaction involving sulphonamides as locking fragments. Inorg Chim Acta. 2012;384:210–8.

    Article  CAS  Google Scholar 

  31. Paik Suh M. Macrocyclic chemistry of nickel. Adv Inorg Chem. 1996;44:93–146.

    Article  Google Scholar 

  32. Shin JW, Yeo SM, Min KS. Copper(II) coordination compounds containing chiral functional groups as pendants: syntheses, crystal structures, and physical properties. Inorg Chem Commun. 2012;22:162–6.

    Article  CAS  Google Scholar 

  33. Shakir M, Islam KS, Mohamed AK, Shagufta M, Hasan SS. Macrocyclic complexes of transition metals with divalent polyaza units. Trans Metal Chem. 1999;24:577–80.

    Article  CAS  Google Scholar 

  34. Stasiuk GJ, Faulkner S, Long NJ. Novel imaging chelates for drug discovery. Curr Opin Pharmacol. 2012;12:576–82.

    Article  CAS  Google Scholar 

  35. Jiang P, Guo Z. Fluorescent detection of zinc in biological systems: recent development on the design of chemosensors and biosensors. Coord Chem Rev. 2004;248:205–29.

    Article  CAS  Google Scholar 

  36. Olar R, Badea M, Marinescu D, Chifiriuc M-C, Bleotu C, Grecu MN, Iorgulescu E-E, Lazar V. N, N-dimethylbiguanide complexes displaying low cytotoxicity as potential large spectrum antimicrobial agents. Eur J Med Chem. 2010;45:3027–34.

    Article  CAS  Google Scholar 

  37. Pătraşcu F, Badea M, Grecu MN, Stanică N, Măruţescu L, Marinescu D, Spînu C, Tigae C, Olar R. Thermal, spectral, magnetic and antimicrobial behaviour of new Ni(II), Cu(II) and Zn(II) complexes with a hexaazamacrocyclic ligand. J Therm Anal Calorim. 2013;113:1421–9.

    Article  Google Scholar 

  38. Cory AH, Owen TC, Barltrop JA, Cory JG. Use of an aqueous soluble tetrazolium/formazan assay for cell growth assays in culture. Cancer Commun. 1991;3:207–12.

    CAS  Google Scholar 

  39. Darzynkiewicz Z. Nucleic acid analysis. In: Robinson JP, managing editor. Current protocols in cytometry. New York: Wiley; 1997. Chap. 7.

  40. Geary WJ. The use of conductivity measurements in organic solvents for the characterisation of coordination compounds. Coord Chem Rev. 1971;7:81–122.

    Article  CAS  Google Scholar 

  41. Dziewułska-Kulaczkowska A, Mazur L, Ferenc W. Thermal, spectroscopic and structural studies of Zn(II) complex with nicotinamide. J Therm Anal Calorim. 2009;96:255–60.

    Article  Google Scholar 

  42. Nakamoto K. Infrared and Raman spectra of inorganic and coordination compounds. New York: Wiley; 1986.

    Google Scholar 

  43. Chandra S, Ruchia, Qanungob K, Sharmab SK. New hexadentate macrocyclic ligand and their copper(II) and nickel(II) complexes: spectral, magnetic, electrochemical, thermal, molecular odeling and antimicrobial studies. Spectrochim Acta A Mol Biomol Spectrosc. 2012;94:312–7.

    Article  CAS  Google Scholar 

  44. Lever ABP. Inorganic electronic spectroscopy. Amsterdam: Elsevier; 1986.

    Google Scholar 

  45. Hathaway BJ, Billing DE. The electronic properties and stereochemistry of mono-nuclear complexes of the copper(II) ion. Coord Chem Rev. 1970;5:143–207.

    Article  CAS  Google Scholar 

  46. Tatucu M, Rotaru P, Rau I, Spinu C, Kriza A. Thermal behaviour and spectroscopic investigation of some methyl 2-pyridyl ketone complexes. J Therm Anal Calorim. 2010;100:1107–14.

    Article  CAS  Google Scholar 

  47. Findoráková L, Győryová K, Hudecová D, Mudroňová D, Kovářová J, Homzová K, Nour El-Dien FA. Thermal decomposition study and biological characterization of zinc(II) 2-chlorobenzoate complexes with bioactive ligands. J Therm Anal Calorim. 2013;111:1771–81.

    Article  Google Scholar 

  48. O’Fallon E, Gautam S, D’Agata EMC. Colonization with multidrug-resistant gram-negative bacteria: prolonged duration and frequent cocolonization. Clin Infect Dis. 2009;48:1375–81.

    Article  Google Scholar 

  49. Kriengkauykiat J, Ito JI, Dadwal SS. Epidemiology and treatment approaches in management of invasive fungal infections. Clin Epidemiol. 2011;3:175–91.

    Google Scholar 

  50. Lazar V. Microbial adherence. Bucharest: Romanian Academy Publ. House; 2003.

    Google Scholar 

  51. Letelier ME, Lepe AM, Faúndez M, Salazar J, Marín R, Aracena P, Speisky H. Possible mechanisms underlying copper-induced damage in biological membranes leading to cellular toxicity. Chem Biol Interact. 2005;151:71–82.

    Article  CAS  Google Scholar 

  52. Dillon CT, Hambley TW, Kennedy BJ, Lay PA, Weder JE, Zhou Q. Copper and zinc complexes as antiinflammatory drugs. In: Sigel A, Sigel H, editors. Metal ions in biological systems metal ions and their complexes in medication. New York: Marcel Dekker; 2004. p. 253–73.

    Google Scholar 

Download references

Acknowledgements

The PhD. student F. Pătraşcu thanks to the Sectorial Operational Programme Human Resources Development (SOP HRD), financed from the European Social Fund and by the Romanian Government under the contract number SOP HRD/107/1.5/S/82514. Support of the EU (ERDF) and Romanian Government, that allowed the acquisition of the research infrastructure under POS-CCE O 2.2.1 project INFRANANOCHEM—No. 19/01.03.2009, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodica Olar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badea, M., Pătraşcu, F., Cerc Korošec, R. et al. Thermal, spectral, magnetic and biologic characterization of new Ni(II), Cu(II) and Zn(II) complexes with a hexaazamacrocyclic ligand bearing ketopyridine moieties. J Therm Anal Calorim 118, 1183–1193 (2014). https://doi.org/10.1007/s10973-014-3857-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-3857-5

Keywords

Navigation