Skip to main content
Log in

Antioxidant synergism between synthesised alkylated diphenylamine and dilauryl thiodipropionate in polyolefin base fluid

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

An oil-soluble additive alkylated diphenylamine (ADPA) was synthesized. The antioxidant activities of ADPA and dilauryl thiodipropionate (DLTDP) as well as their mixtures in PAO10 were evaluated by rotary bomb oxidation test, pressurized differential scanning calorimetry, hot oil oxidation test, and thermogravimetry. All the tests showed that the anti-oxidation stability of ADPA was significantly improved with the addition of DLTDP. The kinetic parameters of thermal-oxidative process were also evaluated using the Kissinger method which has been widely used for the determination of activation energy and pre-exponential factor. The results indicated that ADPA could significantly improve the activation energy of PAO10 and reduce the rate of the thermal-oxidative reaction when combining with DLTDP antioxidant. All these results demonstrated that the combination of ADPA and DLTDP revealed a good synergistic effect and could effectively enhance the thermal-oxidation stability of PAO10. The proposed mechanism of the inhibition involved a synergy between ADPA and DLTDP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Scheme 2

Similar content being viewed by others

References

  1. Rudnick LR. Lubricant additives: chemistry and applications. 2nd ed. Wilmington: Taylor & Francis Group: Designed Materials Group; 2009.

    Book  Google Scholar 

  2. Rizvi SQA. A comprehensive review of lubricant chemistry, technology, selection, and design. West Conshohocken: ASTM International: EUA; 2009. p. 100–12.

    Book  Google Scholar 

  3. Fox NJ, Stachowiak GW. Vegetable oil-based lubricants—a review of oxidation. Tribol Int. 2007;40:1035–46.

    Article  CAS  Google Scholar 

  4. Russell GA. Fundamental processes of autoxidation. J Chem Educ. 1959;36:111–8.

    Article  CAS  Google Scholar 

  5. Yano A, Watananbe S, Miyazaki Y, Tsuchiya M, Yamamoto Y. Study on sludge formation during the oxidation process of turbine oils. Tribol T. 2004;47:111–22.

    Article  CAS  Google Scholar 

  6. Rios MADS, Mazzetto SE. Effect of organophosphate antioxidant on the thermo-oxidative degradation of a mineral oil. J Therm Anal Calorim. 2013;111:553–9.

    Article  Google Scholar 

  7. Du DC, Kim SS, Moon WS, Jin SB, Kwon WS. Oxidation performance of oils containing ZnDTC, ZnDDP and their mixture after oxidation test by PDSC. Thermochim Acta. 2003;407:17–23.

    Article  CAS  Google Scholar 

  8. Kivevele TT, Mbarawa MM, Bereczky A, Zoldy M. Evaluation of the oxidation stability of biodiesel produced from moringa oleifera oil. Energ Fuel. 2011;25:5416–21.

    Article  CAS  Google Scholar 

  9. Focke WW, Westhuizen IVD, Lofte Grobler AB, Nshoane KT, Reddy JK, Luyt AS. The effect of synthetic antioxidants on the oxidative stability of biodiesel. Fuel. 2012;94:227–33.

    Article  CAS  Google Scholar 

  10. Obadiah A, Kannan R, Ramasubbu A, Kumar SV. Studies on the effect of antioxidants on the long-term storage and oxidation stability of Pongamia pinnata (L.) Pierre biodiesel. Fuel Process Technol. 2012;99:56–63.

    Article  CAS  Google Scholar 

  11. Karavalakis G, Stournas S. Impact of antioxidant additives on the oxidation stability of diesel/biodiesel blends. Energ Fuel. 2010;24:3682–6.

    Article  CAS  Google Scholar 

  12. Maia FJN, Ribeiro VG, Clemente CS, Lomonaco D, Vasconcelos PHM, Mazzetto SE. Thermo-oxidative evaluation of new cardol derivatives as antioxidants for mineral oils. J Therm Anal Calorim. 2012;109:1013–8.

    Article  CAS  Google Scholar 

  13. Rios MAS, Santos FFP, Maia FJN, Mazzetto SE. Evaluation of antioxidants on the thermo-oxidative stability of soybean biodiesel. J Therm Anal Calorim. 2013;112:921–7.

    Article  CAS  Google Scholar 

  14. Santos NA, Cordeiro AMTM, Damasceno SS, Aguiar RT, Ro-senhaim R, Filho JRC, Santos IMG, Maia AS, Souza AG. Commercial antioxidants and thermal stability evaluations. Fuel. 2012;97:638–43.

    Article  CAS  Google Scholar 

  15. Quinchia LA, Delgado MA, Valencia C, Franco JM, Gallegos C. Natural and synthetic antioxidant additives for improving the performance of new biolubricant formulations. J Agric Food Chem. 2011;59:12917–24.

    Article  CAS  Google Scholar 

  16. Gatto VJ, Moehle WE, Cobb TW, Schneller ER. The relationship between oxidation stability and antioxidant depletion in turbine oils formulated with groups II, III and IV base stocks. J Syn Lubr. 2007;24:111–24.

    Article  CAS  Google Scholar 

  17. Wiklund P. The response to antioxidants in base oils of different degrees of refining. Lubr Sci. 2007;19:169–82.

    Article  CAS  Google Scholar 

  18. Gatto VJ, Elnagar HY, Moehle WE, Schneller ER. Redesigning alkylated diphenylamine antioxidants for modern lubricants. Lubr Sci. 2007;19:25–40.

    Article  CAS  Google Scholar 

  19. Denison GH, Condit PC. Oxidation of lubricating oils mechanism of sulfur inhibition. Ind Eng Chem. 1945;37:1102–8.

    Article  CAS  Google Scholar 

  20. Hu JQ, Wei XX, Cai GL, Liu CC, Fu Y, Zong ZM, Yao JB. Study demonstrating enhanced oxidation stability when arylamine antioxidants are combined with organic molybdenum complexes. Tribol T. 2007;50:205–10.

    Article  CAS  Google Scholar 

  21. Yao JB. Evaluation of sodium stearate as a synergist for arylamine antioxidants in synthetic lubricants. Thermochim Acta. 1995;262:157–63.

    Article  CAS  Google Scholar 

  22. Wang H, Wu ZW, Wei CL, Sun D, Wu FL. Antioxidant activity of 3,7-di-iso-octyl-phenothiazine and Its synergistic effect with 4,4′-di-iso-octyl-diphenylamine. Tribol T. 2007;50:273–6.

    Article  CAS  Google Scholar 

  23. Duangkaewmanee S, Petsom A. Synergistic and antagonistic effects on oxidation stability of antioxidants in a synthetic ester based oil. Tribol Int. 2011;44:266–71.

    Article  CAS  Google Scholar 

  24. Sharma BK, Perez JM, Erhan SZ. Soybean oil-based lubricants: a search for synergistic antioxidants. Energ Fuel. 2007;21:2408–14.

    Article  CAS  Google Scholar 

  25. Du DC, Kim SS, Chun JS, Suh CM, Kwon WS. Antioxidation synergism between ZnDTC and ZnDDP in mineral oil. Tribol Lett. 2002;13:21–7.

    Article  CAS  Google Scholar 

  26. Wu YX, Li WM, Zhang M, Wang XB. Improvement of oxidative stability of trimethylolpropane trioleate lubricant. Thermochim Acta. 2013;569:112–8.

    Article  CAS  Google Scholar 

  27. Jain MR, Sawant S, Paulmer RDA, Ganguli D, Vasudev G. Evaluation of thermo-oxidative characteristics of gear oils by different techniques: effect of antioxidant chemistry. Thermochim Acta. 2005;435:172–5.

    Article  CAS  Google Scholar 

  28. Basuli U, Chaki TK, Setua DK, Chattopadhyay S. A comprehensive assessment on degradation of multi-walled carbon nanotube-reinforced EMA nanocomposites. J Therm Anal Calorim. 2012;108:1223–32.

    Article  CAS  Google Scholar 

  29. Nunez L, Villanueva M, Rial B, Nunez MR, Fraga L. Thermal stability of epoxy systems badge (n = 0)/1,2-dch and badge (n = 0)/1,2-dch/vinylcyclohexene dioxide. J Therm Anal Calorim. 2002;70:75–84.

    Article  CAS  Google Scholar 

  30. Song PX, Wen DS, Guo ZX, Korakianitis T. Oxidation investigation of nickel nanoparticles. Phys Chem Chem Phys. 2008;10:5057–65.

    Article  CAS  Google Scholar 

  31. Volli V, Purkait MK. Physico-chemical properties and thermal degradation studies of commercial oils in nitrogen atmosphere. Fuel. 2014;117:1010–9.

    Article  CAS  Google Scholar 

  32. Noisong P, Danvirutai C, Boonchom B. Thermodynamic and kinetic properties of the formation of Mn2P2O7 by thermal decomposition of Mn(H2PO2)2·H2O. J Chem Eng Data. 2009;54:871–5.

    Article  CAS  Google Scholar 

  33. Boonchom B, Danvirutai C. Study of the dehydration of Co(H2PO4)2·2H2O. J Chem Eng Data. 2009;54:1225–30.

    Article  CAS  Google Scholar 

  34. Shaw CK. Process for otho-and para-alkylating diphenylamines. Patent: US 4739121, 19 April 1988.

  35. Bayha CE, Madden TR. Method for producing dialkylated diphenylamines. Patent: US 3714257, 30 Jan 1937.

  36. Gracia N, Thomas S, Thibault-Starzyk F, Lerasle O, Duponchel L. Combination of mid-infrared spectroscopy and curve resolution method to follow the antioxidant action of alkylated diphenylamines. 2011;106:210–5.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Major State Basic Research Development Program of China (973 Program) (Grant No. 2013CB632301).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaobo Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chao, M., Li, W. & Wang, X. Antioxidant synergism between synthesised alkylated diphenylamine and dilauryl thiodipropionate in polyolefin base fluid. J Therm Anal Calorim 117, 925–933 (2014). https://doi.org/10.1007/s10973-014-3808-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-3808-1

Keywords

Navigation