Skip to main content
Log in

Thermal and kinetic analyses of 2,5-bis(2-hydroxyphenyl)thiazolo[5,4-d]thiazole

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermal behavior and UV–Vis absorption properties of 2,5-bis(2-hydroxyphenyl)thiazolo[5,4-d]thiazole were investigated in the present study. It was found that decomposition occurs in two stages which correspond to removal of both phenolic rings and degradation of remaining core structure, respectively. After the characterization of decomposition stages, apparent activation energy values of each stage were calculated using model-free isoconversional methods (FWO and KAS). Apparent activation energies of decomposition stages are determined by both methods. Their averages are calculated as 98.232 and 123.253 kJ mol−1 in consecutive order. UV–Vis absorption properties of this compound have been determined with using different solvents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ephraim J. Action of aldehydes on thioamides. Chem Ber. 1891;24:1026–31.

    Article  Google Scholar 

  2. Johnson JR, Ketcham R, Thiazolothiazoles I. The reaction of aromatic aldehydes with dithiooxamide. J Am Chem Soc. 1960;82:2719–24.

    Article  CAS  Google Scholar 

  3. Bevk D, Marin L, Lutsen L, Vanderzande D, Maes W. Thiazolo[5,4-d]thiazoles—promising building blocks in the synthesis of semiconductors for plastic electronics. RSC Adv. 2013;3:11418–31.

    Article  CAS  Google Scholar 

  4. Pinto MR, Takahata Y, Atvars TDZ. Photophysical properties of 2,5-diphenyl-thiazolo[5,4-d]thiazole. J Photochem Photobiol A. 2001;143(2–3):119–27.

    Article  CAS  Google Scholar 

  5. Bartulin J, Zuniga C, Muller H, Taylor TR. Synthesis and mesomorphic properties of 2,5-di-(4-N-alkyloxyphenyl)thiazolo[5,4-d]thiazoles. Mol Cryst Liq Cryst. 1990;180:297–304.

    Google Scholar 

  6. Helgesen M, Madsen MV, Andreasen B, Tromholt T, Andreasen JW, Krebs FC. Thermally reactive thiazolo[5,4-d]thiazole based copolymers for high photochemical stability in polymer solar cells. Polym Chem. 2011;2:2536–42.

    Article  CAS  Google Scholar 

  7. Mamada M, Nishida J, Kumaki D, Tokito S, Yamashita Y. n-Type organic field-effect transistors with high electron mobilities based on thiazole–thiazolothiazole conjugated molecules. Chem Mater. 2007;19:5404–9.

    Article  CAS  Google Scholar 

  8. Chaiyo N, Muanghlua R, Niemcharoen S, Boonchom B, Seeharaj P, Vittayakorn N. Non-isothermal kinetics of the thermal decomposition of sodium oxalate Na2C2O4. J Therm Anal Calorim. 2012;107:1023–9.

    Article  CAS  Google Scholar 

  9. Su TT, Jiang H, Gong H. Thermal decomposition and dehydration kinetic studies on hydrated Co(II)methanesulfonate. Thermochim Acta. 2005;435:1–5.

    Article  CAS  Google Scholar 

  10. Vecchio S, Materazzi S, Kurdziel K. Thermal decomposition kinetics of palladium(II) 1-allylimidazole complexes. Int J Chem Kinet. 2005;37:667–74.

    Article  CAS  Google Scholar 

  11. Cetişli H, Çılgı GK, Donat R. Thermal and kinetic analysis of uranium salts. Part 1. Uranium(VI) oxalate hydrates. J Therm Anal Calorim. 2012;108:1213–22.

    Article  Google Scholar 

  12. Çılgı GK, Cetişli H, Donat R. Thermal and kinetic analysis of uranium salts. Part 2. Uranium (VI) acetate hydrates. J Therm Anal Calorim. 2012;110:127–35.

    Article  Google Scholar 

  13. Ak M, Cilgi GK, Kuru FD, Cetisli H. Thermal decomposition kinetics of polypyrrole and its star shaped copolymer. J Therm Anal Calorim. 2013;111:1627–32.

    Article  CAS  Google Scholar 

  14. Wang SX, Tan ZC, Li YS, Sun LX, Li Y. A kinetic analysis of thermal decomposition of polyaniline/ZrO2 composite. J Therm Anal Calorim. 2008;92(2):483–7.

    Article  CAS  Google Scholar 

  15. Liu Y, Zhao J, Zhang H, Zhu Y, Wang Z. Thermal decomposition of basic zinc carbonate in nitrogen atmosphere. Thermochim Acta. 2004;414:121–3.

    Article  CAS  Google Scholar 

  16. Emen FM, Ocakoglu K, Külcü N. An investigation of decomposition stages of a ruthenium polypyridyl complex by non-isothermal methods. J Therm Anal Calorim. 2012;110:799–805.

    Article  CAS  Google Scholar 

  17. Çılgı GK, Cetişli H, Donat R. Thermal and kinetic analysis of uranium salts. Part III. Uranium(IV) oxalate hydrates. J Therm Anal Calorim. 2014;115:2007–20.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gülbanu Koyundereli Çılgı.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Söyleyici, S., Çılgı, G.K. Thermal and kinetic analyses of 2,5-bis(2-hydroxyphenyl)thiazolo[5,4-d]thiazole. J Therm Anal Calorim 118, 705–709 (2014). https://doi.org/10.1007/s10973-014-3796-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-3796-1

Keywords

Navigation