Skip to main content
Log in

Taguchi method optimization of wax production from pyrolysis of waste polypropylene

A green nanotechnology approach

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Present research deals with the conversion of waste commodity plastics to valuable commercial product in the form of wax by pyrolysis. Optimization of both processes yield and produced wax quality was performed by means of a statistical tool originally proposed by G. Taguchi, using temperature, catalyst, carrier gas, and dwell time as the parameters. The obtained wax was characterized by Raman spectroscopy, differential scanning calorimetry, and thermogravimetric analysis. Yield of wax was found to be maximum when the parameters were 600 °C, Fe catalyst, nitrogen gas atmosphere, and 15 min time. However, stability of the wax was found to be optimum at 700 °C. Calorific value of the wax thus obtained was ~43 MJ kg−1, which supports its suitability as fuels like other petroleum products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Alireza B, Gordon M. A review—synthesis of carbon nanotubes from plastic wastes. Chem Eng J. 2012;195–196:377–91.

    Google Scholar 

  2. Tschan MJ-L, Brule E, Haquette P, Thomas CM. Synthesis of biodegradable polymers from renewable resources. Polym Chem. 2012;3:836–51.

    Article  CAS  Google Scholar 

  3. Lin Y, Yen H. Fluidised bed pyrolysis of polypropylene over cracking catalysts for producing hydrocarbons. Polym Degrad Stab. 2005;89:101–8.

    Article  CAS  Google Scholar 

  4. Siddiqui MN, Redhwi HH. Catalytic coprocessing of waste plastics and petroleum residue into liquid fuel oils. J Anal Appl Pyrolysis. 2009;86:141–7.

    Article  CAS  Google Scholar 

  5. Mishra N, Das G, Ansaldo A, Genovese A, Malerba M, et al. Pyrolysis of waste polypropylene for the synthesis of carbon nanotubes. J Anal Appl Pyrolysis. 2012;94:91–8.

    Article  CAS  Google Scholar 

  6. Kaminsky W. Recycling of polymers by pyrolysis. J Phys IV France. 1993;3:1543–52.

    Article  CAS  Google Scholar 

  7. Mishra N, Pandey S, Patil B, Thakur M, Mewada A, Sharon M, Sharon M. Facile route to generate fuel oil via catalytic pyrolysis of waste polypropylene bags: towards waste management of >20 μm plastic bags. J Fuels. 2014;2014:1–11.

    Article  Google Scholar 

  8. Vasile C. Thermal and catalytic decomposition of mixed plastics. J Anal Appl Pyrolysis. 2001;57:287–303.

    Article  CAS  Google Scholar 

  9. Westerhout RWJ, Waanders J, Kuipers JAM, Van Swaaij WPM. Kinetics of the low-temperature pyrolysis of polyethene, polypropene, and polystyrene modeling, experimental determination, and comparison with literature models and data. Ind Eng Chem Res. 1997;36:1955–64.

    Article  CAS  Google Scholar 

  10. Bertolini FJ, Gerard E. Value recovery from plastics waste by pyrolysis in molten salts. Conserv Recycl. 1987;10:331–43.

    Article  CAS  Google Scholar 

  11. Bockhorn H, Hornung A, Hornung U. Mechanisms and kinetics of thermal decomposition of plastics from isothermal and dynamic measurements. J Anal Appl Pyrolysis. 1999;50:77–101.

    Article  CAS  Google Scholar 

  12. Bockhorn H, Hornung A, Hornung U, Schawaller D. Kinetic study on the thermal degradation of polypropylene and polyethylene. J Anal Appl Pyrolysis. 1999;48:93–109.

    Article  CAS  Google Scholar 

  13. Bockhorn H, Hornung A, Hornung U. Stepwise pyrolysis for raw material recovery from plastic waste. J Anal Appl Pyrolysis. 1998;46:1–13.

    Article  CAS  Google Scholar 

  14. Marcilla RA, Garcıa-Quesada JC, Sanchez S. Study of the catalytic pyrolysis behaviour of polyethylene—polypropylene mixtures. J Anal Appl Pyrolysis. 2005;74:387–92.

    Article  CAS  Google Scholar 

  15. Aguado R, Jose JS, Gaisa B. Wax formation in the pyrolysis of polyolefins in a conical spouted bed reactor. Energy. 2002;16:1429–37.

    CAS  Google Scholar 

  16. Elordi G, Lopez G, Olazar M, Aguado R, Bilbao J. Product distribution modelling in the thermal pyrolysis of high density polyethylene. J Hazard Mater. 2007;144:708–14.

    Article  CAS  Google Scholar 

  17. Umare PS, Antony R, Gopalakrishnan K, Tembe GL, Trivedi B. Synthesis of low molecular weight polyethylene waxes by a titanium BINOLate-ethylaluminum sesquichloride catalyst system. J Mol Catal A. 2005;242:141–50.

    Article  CAS  Google Scholar 

  18. Li J, Wang S, Yang X. Study on the conversion technology of waste polyethylene plastic to polyethylene wax. Eng Sourc. 2010;25:77–82.

    CAS  Google Scholar 

  19. Jagdale P, Sharon M, Kalita G, Maldar NMN, Sharon M. Adv Mater Phys Chem. 2012;2:1–10.

    Article  CAS  Google Scholar 

  20. Porro SA, Musso S, Giorcelli M, Chiodoni A, Tagliaferro A. Optimization of a thermal-CVD system for carbon nanotube growth. Physica E. 2007;37:16–20.

    Article  CAS  Google Scholar 

  21. Szabo R, Kiricsi I. Optimization of CCVD synthesis conditions for single-wall carbon nanotubes by statistical design of experiments (DoE). Carbon. 2005;43:2842–9.

    Article  Google Scholar 

  22. Kim K, Kim S. Nickel particles prepared from nickel nitrate with and without urea by spray pyrolysis. Powder Technol. 2004;145:155–62.

    Article  CAS  Google Scholar 

  23. Arandes M, Torre I, Castan P, Olazar M, Bilbao J, Paı U. Catalytic cracking of waxes produced by the fast pyrolysis of polyolefins. Energ Fuel. 2007;21:579–87.

    Article  Google Scholar 

  24. Sharratt PN, Lin Y. Investigation of the catalytic pyrolysis of high-density polyethylene over a HZSM-5 catalyst in a laboratory fluidized-bed reactor. Ind Eng Chem Res. 1997;36:5118–24.

    Article  CAS  Google Scholar 

  25. Park DW, Hwang EY, Kim JR, Choi JK, Kim YA, Woo HC. Catalytic degradation of polyethylene over solid acid catalysts. Polym Degrad Stab. 1999;65:3–8.

    Article  Google Scholar 

  26. Kiran Ciliz N, Ekinci E, Snape CE. Pyrolysis of virgin and waste polypropylene and its mixtures with waste polyethylene and polystyrene. Waste Manage. 2004;24:173–81.

    Article  CAS  Google Scholar 

  27. Arabiourrutia M, Elordi G, Lopez G, Borsella E, Bilbao J, Olazar M. Characterization of the waxes obtained by the pyrolysis of polyolefin plastics in a conical spouted bed reactor. J Anal Appl Pyrolysis. 2012;94:230–7.

    Article  CAS  Google Scholar 

  28. Chaala A, Darmstadt H, Roy C. Vacuum pyrolysis of electric cable wastes. J. Anal Appl Pyrolysis. 1997;39:79–96.

    Article  CAS  Google Scholar 

  29. Faolain EO, Hunter MB, Byrne JM, Kelehan P, Lambkin HA, Byrne HJ, et al. Raman spectroscopic evaluation of efficacy of current paraffin wax section dewaxing agents. J Histochem Cytochem. 2005;53:121–9.

    Article  CAS  Google Scholar 

  30. Zheng M, Du W. Phase behavior, conformations, thermodynamic properties, and molecular motion of multicomponent paraffin waxes: a Raman spectroscopy study. Vib Spectrosc. 2006;40:219–24.

    Article  CAS  Google Scholar 

  31. Krupa I, Luyt AS. Thermal properties of uncross-linked and cross-linked LLDPE/wax blends. Polym Degrad Stab. 2000;70:111–7.

    Article  CAS  Google Scholar 

  32. Krupa I, Luyt AS. Thermal properties of polypropylene/wax blends. Thermochim Acta. 2001;372:137–41.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to Ministry of new and renewable energy (MNRE) for financial support. We are also thankful to Mr. Mukeshchand Thakur for Art works in the paper and Mr. Mauro Povia for carrying out XRD analysis available as Supplementary Information. Also, authors are indebted to Italian institute of technology for providing the characterization facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neeraj Mishra.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 351 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, N., Patra, N., Pandey, S. et al. Taguchi method optimization of wax production from pyrolysis of waste polypropylene. J Therm Anal Calorim 117, 885–892 (2014). https://doi.org/10.1007/s10973-014-3793-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-3793-4

Keywords

Navigation