Skip to main content
Log in

Thermal behavior of cashew gum by simultaneous TG/DTG/DSC-FT-IR and EDXRF

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Cashew gum, an exudate polysaccharide from Anacardium occidentale L., was purified by alcohol precipitation. Thermal behavior of this polysaccharide was investigated by simultaneous TG/DTG/DSC-FT-IR analysis performed under nitrogen and air atmospheres and heating rate of 10 K min−1. TG/DTG curves under oxidative atmosphere were similar to the curves under N2 atmosphere until 340 °C, however, it was observed a profile difference due to the presence of two DTG peaks at 430 and 460 °C. DSC results showed endothermic and exothermic events corroborating with TG/DTG curves. The Simultaneous TG/DSC-FTIR analysis revealed that evolved gases from the decomposition of cashew gum sample were CO2, CO, and groups: O–H, C–H, C=O, C–C, and C–O, in nitrogen and air atmospheres. Energy dispersive X-ray fluorescence analysis from the ash showed that the elements in larger amounts are CaO, MgO, and K2O.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Alves VD, Freitas F, Costa N, Carvalheira M, Oliveira R, Gonçalves MP, Reis MAM. Effect of temperature on the dynamic and steady-shear rheology of a new microbial extracellular polysaccharide produced from glycerol byproduct. Carbohydr Polym. 2010;79:981–8.

    Article  CAS  Google Scholar 

  2. Villetti MA, Crespo JS, Soldi MS, Pires ATN, Borsali R, Soldi V. Thermal degradation of natural polymers. J Therm Anal Calorim. 2002;67:295–303.

    Article  CAS  Google Scholar 

  3. Mothé CG, Miranda IC. Study of kinetic parameters of thermal decomposition of bagasse and sugarcane straw using Friedman and Ozawa–Flynn–Wall isoconversional methods. J Therm Anal Calorim. 2013;113:497–505.

    Google Scholar 

  4. Yang H, Yan R, Chen H, Lee DH, Zheng C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel. 2007;86:1781–8.

    Article  CAS  Google Scholar 

  5. Shen DK, Gu S. The mechanism for thermal decomposition of cellulose and its main products. Bioresour Technol. 2009;100:6496–504.

    Article  CAS  Google Scholar 

  6. Mothé CG, Rao MA. Thermal behavior of gum arabic in comparison with cashew gum. Thermochim Acta. 2000;357:9–13.

    Article  Google Scholar 

  7. Mothé CG, Souza IV, Calazans GMT. Antitumor activity of cashew gum from Anacardium occidentale L. Agro Food Ind Hi-Tech. 2008;19:38–40.

    Google Scholar 

  8. Marques MR, Xavier-Filho J. Enzymatic and inhibitory activities of cashew tree gum exudate. Phytochemistry. 1991;30:1431–3.

    Article  CAS  Google Scholar 

  9. de Paula RCM, Rodrigues JF. Composition and rheological properties of cashew tree gum, the exudate polysaccharide from Anacardium occidentale L. Carbohydr Polym. 1995;26:177–81.

    Article  Google Scholar 

  10. de Pinto GL, Martinez M, Mendoza JA, Ocando E, Rivas C. Comparison of three anarcardiaceae gum exudates. Biochem Syst Ecol. 1995;23:151–6.

    Article  Google Scholar 

  11. Anderson DMW, Bell PC. Structural analysis of the gum polysaccharide from Anacardium occidentale. Anal Chim Acta. 1975;79:185–97.

    Article  CAS  Google Scholar 

  12. Mothé CG, Rao MA. Rheological behavior of aqueous dispersions of cashew gum and gum arabic: effect of concentration and blending. Food Hydrocoll. 1999;13:501–6.

    Article  Google Scholar 

  13. Carestiato T, Aguila MB, Mothé CG. The effects of cashew gum as anti-hypertensive agent—thermoanalytical investigation and micrographs of heart samples of SHR. J Therm Anal Calorim. 2009;97:717–20.

    Article  CAS  Google Scholar 

  14. Cucos A, Petru B. Simultaneous TG/DTG–DSC–FTIR characterization of collagen in inert and oxidative atmospheres. J Therm Anal Calorim. 2014;115:2079–87.

    Article  CAS  Google Scholar 

  15. Gao N, Li A, Quan C, Du L, Duan Y. TG–FTIR and Py–GC/MS analysis on pyrolysis and combustion of pine sawdust. J Anal Appl Pyrol. 2013;100:26–32.

    Article  CAS  Google Scholar 

  16. Liu X, Ma H, Yu L, Chen L, Tong Z, Chen P. Thermal-oxidative degradation of high-amylose corn starch. J Therm Anal Calorim. 2014;115(1):659–65.

    Article  CAS  Google Scholar 

  17. Mothé MG, Mothé CG, de Carvalho CHM, de Oliveira MCK. Thermal investigation of heavy crude oil by simultaneous TG–DSC–FT-IR and EDXRF. J Therm Anal Calorim. 2013;113(2):525–31.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Brazilian Agency: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheila Gonçalves Mothé.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mothé, C.G., de Freitas, J.S. Thermal behavior of cashew gum by simultaneous TG/DTG/DSC-FT-IR and EDXRF. J Therm Anal Calorim 116, 1509–1514 (2014). https://doi.org/10.1007/s10973-014-3788-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-3788-1

Keywords

Navigation