Skip to main content
Log in

TG-pyrolysis and FTIR analysis of chocolate and biomass waste

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Four waste streams from a chocolate factory were examined in view of their possible usage as a fuel: cocoa shell, jute bags, and two qualities of chocolate waste (milk, white). Thus, proximate and ultimate analyses and thermogravimetric analyses coupled with Fourier transform infrared (TG-FTIR) analyses were conducted. It was observed that milk and white chocolates have similar thermal properties; chocolate has a high calorific value (24.5 MJ kg−1). Pyrolysis of chocolate proceeds in two stages: the first from 190 to 300 °C and the second from 300 to 518 °C. During the first stage, alkaloids, such as theobromine and caffeine, evolve, and sugar decomposes, releasing acids, CO2, and water. During the second pyrolysis stage, cocoa butter and proteins decompose releasing volatile organics such as esters, acids, amides, phenols, CH4, CO, etc. Polyphenols such as catechin, procyanidins, etc. decompose during both pyrolysis stages. Generally, chocolate waste yields less CO2 and CO than cocoa shell and jute. In principle, it appears to be a promising source of energy and could be utilized by both co-firing and pyrolysis, producing fuels or chemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Watson RR, Preedy VR, Zibadi S. Chocolate in health and nutrition. New York: Springer; 2012.

    Google Scholar 

  2. Jansson DS, Galgan V, Schubert B, Segerstad CA. Theobromine intoxication in a red fox and a European badger in Sweden. J Wildlife Dis. 2001;37(2):362–5.

    Article  CAS  Google Scholar 

  3. Curtis PE, Griffiths JE. Suspected chocolate poisoning of calves. Vet Rec. 1972;90:313–4.

    Google Scholar 

  4. Alexander J, Benford D, Cockburn A, Cravedi JP, Dogliotti E, Domenico AD, et al. Opinion of the scientific panel on contaminants in the food chain on a request from the European commission to perform a scientific risk assessment on nitrate in vegetables. EFSA J. 2008;689:1–79.

    Google Scholar 

  5. Zoumas BL, Kreiser WR, Martin R. Theobromine and caffeine content of chocolate products. J Food Sci. 2006;45(2):314–6.

    Article  Google Scholar 

  6. Commission E. Directive 2000/36/EC of the European Parliament and the Council of 23 June 2000 relating to cocoa and chocolate products intended for human consumption. Off J L. 2000;197:19–25.

    Google Scholar 

  7. Andrews R. All about chocolate. http://www.precisionnutrition.com/all-about-chocolate (2009).

  8. Leung DY, Wu X, Leung M. A review on biodiesel production using catalyzed transesterification. Appl Energy. 2010;87(4):1083–95.

    Article  CAS  Google Scholar 

  9. Singh SP, Singh D. Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: a review. Renew Sustain Energy Rev. 2010;14(1):200–16.

    Article  CAS  Google Scholar 

  10. Haytowitz D, Lemar L, Pehrsson P, Exler J, Patterson K, Thomas R et al. USDA National Nutrient Database for standard reference, Release 24 (2012).

  11. Cseke LJ, Kirakosyan A, Kaufman PB, Warber S, Duke JA, Brielmann HL. Natural products from plants. 2nd ed. Boca Raton: CRC Press; 2006.

    Google Scholar 

  12. Viswas A, Tewari K. A textbook of organic chemistry. 3rd ed. New Delhi: Vikas Publishing House; 2009.

    Google Scholar 

  13. Gu L, Suzanne E, Wu X, Ou B, Ronald L. Procyanidin and catechin contents and antioxidant capacity of cocoa and chocolate products. J Agr Food Chem. 2006;54(11):4057–61.

    Article  CAS  Google Scholar 

  14. Kealey KS, Snyder RM, Romanczyk Jr LJ, Hammerstone Jr JF, Buck MM, Cipolla GG. Foods containing cocoa solids having high cocoa polyphenol contents. Google Patents (2002).

  15. Kirschbaum MUF. The temperature dependence of organic-matter decomposition—still a topic of debate. Soil Biol Biochem. 2006;38(9):2510–8.

    Article  CAS  Google Scholar 

  16. Galletti GC. Py-GC-ion trap detection of sorghum grain polyphenols (syn. vegetable tannins): preliminary results. Fuel Chem Div ACS. 1991;36:691–702.

    CAS  Google Scholar 

  17. Rowland SJ. The protein distribution in normal and abnormal milk. J Dairy Res. 1938;9(01):47–57.

    Article  CAS  Google Scholar 

  18. Hansson K, Samuelsson J, Tullin C, Mand L. Formation of HNCO, HCN, and NH3 from the pyrolysis of bark and nitrogen-containing model compounds. Combust Flame. 2004;137(3):265–77.

    Article  CAS  Google Scholar 

  19. Crawshaw R. Co-product feeds: animal feeds from the food and drinks industries. Nottingham: Nottingham University Press; 2001.

    Google Scholar 

  20. Yi Q, Qi F, Cheng G, Zhang Y, Xiao B, Hu Z, et al. Thermogravimetric analysis of co-combustion of biomass and biochar. J Therm Anal Calorim. 2013;112(3):1475–9.

    Article  CAS  Google Scholar 

  21. Villanueva M, Proupín J, Rodriguez-Anon J, Fraga-Grueiro L, Salgado J, Barros N. Energetic characterization of forest biomass by calorimetry and thermal analysis. J Therm Anal Calorim. 2011;104(1):61–7.

    Article  CAS  Google Scholar 

  22. Ta S, Yürüm Y. Co-firing of biomass with coals. J Therm Anal Calorim. 2012;107(1):293–8.

    Article  Google Scholar 

  23. Figen AK, Smail O, Pi Kin S. Devolatilization non-isothermal kinetic analysis of agricultural stalks and application of TG-FT/IR analysis. J Therm Anal Calorim. 2012;107(3):1177–89.

    Article  CAS  Google Scholar 

  24. Arts IC, van de Putte B, Hollman PC. Catechin contents of foods commonly consumed in The Netherlands. 2. Tea, wine, fruit juices, and chocolate milk. J Agr Food Chem. 2000;48(5):1752–7.

    Article  CAS  Google Scholar 

  25. Adamson GE, Lazarus SA, Mitchell AE, Ronald L, Cao G, Jacobs PH, et al. HPLC method for the quantification of procyanidins in cocoa and chocolate samples and correlation to total antioxidant capacity. J Agr Food Chem. 1999;47(10):4184–8.

    Article  CAS  Google Scholar 

  26. Hammerstone JF, Lazarus SA, Mitchell AE, Rucker R, Schmitz HH. Identification of procyanidins in cocoa (Theobroma cacao) and chocolate using high-performance liquid chromatography/mass spectrometry. J Agr Food Chem. 1999;47(2):490–6.

    Article  CAS  Google Scholar 

  27. Vinson JA, Proch J, Zubik L. Phenol antioxidant quantity and quality in foods: cocoa, dark chocolate, and milk chocolate. J Agr Food Chem. 1999;47(12):4821–4.

    Article  CAS  Google Scholar 

  28. Bassilakis R, Carangelo RM, Wojtowicz MA. TG-FTIR analysis of biomass pyrolysis. Fuel. 2001;80(12):1765–86.

    Article  CAS  Google Scholar 

  29. Fasina O, Littlefield B. TG-FTIR analysis of pecan shells thermal decomposition. Fuel Process Technol. 2012;102:61–6.

    Article  CAS  Google Scholar 

  30. Sharma RK, Chan WG, Hajaligol MR. Effect of reaction conditions on product distribution from the co-pyrolysis of α-amino acids with glucose. J Anal Appl Pyrol. 2009;86(1):122–34.

    Article  CAS  Google Scholar 

  31. Joardder MUH, Islam MR, Beg M, Alam R. Pyrolysis of coconut shell for bio-oil. In: International conference on Mechanical Engineering 2011, Dhaka. Bangladesh University of Engineering and Technology; 2011.

  32. Souza BS, Moreira APD, Teixeira AMR. TG-FTIR coupling to monitor the pyrolysis products from agricultural residues. J Therm Anal Calorim. 2009;97(2):637–42.

    Article  CAS  Google Scholar 

  33. Asadullah M, Anisur Rahman M, Mohsin Ali M, Abdul Motin M, Borhanus Sultan M, Robiul Alam M, et al. Jute stick pyrolysis for bio-oil production in fluidized bed reactor. Bioresour Technol. 2008;99(1):44–50.

    Article  CAS  Google Scholar 

  34. Tao L, Zhao G, Qian J, Qin Y. TG–FTIR characterization of pyrolysis of waste mixtures of paint and tar slag. J Hazard Mater. 2010;175(1):754–61.

    Article  CAS  Google Scholar 

  35. Parikh J, Channiwala SA, Ghosal GK. A correlation for calculating HHV from proximate analysis of solid fuels. Fuel. 2005;84(5):487–94.

    Article  CAS  Google Scholar 

  36. Arenillas A, Rubiera F, Arias B, Pis JJ, Faundez JM, Gordon AL, et al. A TG/DTA study on the effect of coal blending on ignition behaviour. J Therm Anal Calorim. 2004;76(2):603–14.

    Article  CAS  Google Scholar 

  37. Vassilev SV, Baxter D, Vassileva CG. An overview of the behaviour of biomass during combustion: part I. Phase-mineral transformations of organic and inorganic matter. Fuel. 2013;112:391–449.

    Article  CAS  Google Scholar 

  38. Jiang X, Feng Y, Lv G, Du Y, Qin D, Li X, et al. Bioferment residue: TG-FTIR study and cocombustion in a MSW incineration plant. Environ Sci Technol. 2012;46(24):13539–44.

    Article  CAS  Google Scholar 

  39. De Jong W, Di Nola G, Venneker B, Spliethoff H, Wójtowicz MA. TG-FTIR pyrolysis of coal and secondary biomass fuels: determination of pyrolysis kinetic parameters for main species and NO x precursors. Fuel. 2007;86(15):2367–76.

    Article  Google Scholar 

  40. Biagini E, Barontini F, Tognotti L. Devolatilization of biomass fuels and biomass components studied by TG/FTIR technique. Ind Eng Chem Res. 2006;45(13):4486–93.

    Article  CAS  Google Scholar 

  41. Idris SS, Rahman NA, Ismail K, Alias AB, Rashid ZA, Aris MJ. Investigation on thermochemical behaviour of low rank Malaysian coal, oil palm biomass and their blends during pyrolysis via thermogravimetric analysis (TGA). Bioresour Technol. 2010;101(12):4584–92.

    Article  CAS  Google Scholar 

  42. Song C, Hu H, Zhu S, Wang G, Chen G. Nonisothermal catalytic liquefaction of corn stalk in subcritical and supercritical water. Energy Fuel. 2004;18(1):90–6.

    Article  CAS  Google Scholar 

  43. Yang H, Yan R, Chen H, Lee DH, Zheng C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel. 2007;86(12):1781–8.

    Article  CAS  Google Scholar 

  44. Carrier M, Loppinet-Serani A, Denux D, Lasnier J, Ham-Pichavant F, Cansell F, et al. Thermogravimetric analysis as a new method to determine the lignocellulosic composition of biomass. Biomass Bioenergy. 2011;35(1):298–307.

    Article  CAS  Google Scholar 

  45. Basak RK, Saha SG, Sarkar AK, Saha M, Das NN, Mukherjee AK. Thermal properties of jute constituents and flame retardant jute fabrics. Text Res J. 1993;63(11):658–66.

    Article  CAS  Google Scholar 

  46. Redgwell R, Trovato V, Merinat S, Curti D, Hediger S, Manez A. Dietary fibre in cocoa shell: characterisation of component polysaccharides. Food Chem. 2003;81(1):103–12.

    Article  CAS  Google Scholar 

  47. Cao J, Xiao G, Xu X, Shen D, Jin B. Study on carbonization of lignin by TG-FTIR and high-temperature carbonization reactor. Fuel Process Technol. 2012;106:41–7.

    Article  Google Scholar 

  48. Quan C, Li A, Gao N. Research on pyrolysis of PCB waste with TG-FTIR and Py-GC/MS. J Therm Anal Calorim. 2012;110(3):1463–70.

    Article  CAS  Google Scholar 

  49. Sami M, Annamalai K, Wooldridge M. Co-firing of coal and biomass fuel blends. Prog Energy Combust. 2001;27(2):171–214.

    Article  CAS  Google Scholar 

  50. Biagini E, Lippi F, Petarca L, Tognotti L. Devolatilization rate of biomasses and coal-biomass blends: an experimental investigation. Fuel. 2002;81(8):1041–50.

    Article  CAS  Google Scholar 

  51. Di Nola G, De Jong W, Spliethoff H. TG-FTIR characterization of coal and biomass single fuels and blends under slow heating rate conditions: partitioning of the fuel-bound nitrogen. Fuel Process Technol. 2010;91(1):103–15.

    Article  Google Scholar 

  52. Pricewaterhouse. Disposal protocol. In: Jute ecolabel. http://www.jute.com:8080/c/document_library (2006).

  53. Suzuki T, Yamada T, Okazaki N, Tada A, Nakanishi M, Futamata M, et al. Electromagnetic shielding capacity of wood char loaded with nickel. Mater Sci Res Int. 2001;7(3):206–12.

    CAS  Google Scholar 

  54. Ross AB, Jones JM, Kubacki ML, Bridgeman T. Classification of macroalgae as fuel and its thermochemical behaviour. Bioresour Technol. 2008;99(14):6494–504.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The project was supported by the National Basic Research Program (973 Program) of China (2011CB201500), the Research Project of environmental protection commonwealth industry (201209023-4), the National High Technology Research and Development Program of China (2009AA064704), the National High Technology Research and Development Program of China (863 Program, 2012AA063505), Zhejiang University President Special Fund (585100-172210331), the Program of Introducing Talents of Discipline to University (B08026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuguang Jiang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 634 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, Y., Jiang, X., Lv, G. et al. TG-pyrolysis and FTIR analysis of chocolate and biomass waste. J Therm Anal Calorim 117, 343–353 (2014). https://doi.org/10.1007/s10973-014-3741-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-3741-3

Keywords

Navigation