Skip to main content
Log in

Excess parameters for binary mixtures of alkyl benzoates with 2-propanol at different temperatures

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Density (ρ), viscosity (η), and speed of sound (U) values for the binary mixture systems of methyl benzoate + 2-propanol and ethyl benzoate + 2-propanol including those of pure liquids were measured over the entire mole fraction range at five different temperatures (303.15, 308.15, 313.15, 318.15, and 323.15) K. From these experimentally determined values, various thermo-acoustic parameters such as excess isentropic compressibility \( \left( {K_{\text{s}}^{\text{E}} } \right) \), excess molar volume (V E) and excess free length \( \left( {L_{\text{f}}^{\text{E}} } \right) \), excess Gibb’s free energy (ΔG *E), and excess enthalpy (H E) have been calculated. The excess functions have been fitted to the Redlich–Kister type polynomial equation. The deviations for excess thermo-acoustic parameters have been explained on the basis of the intermolecular interactions present in these binary mixtures. The theoretical values of speed of sound in the mixtures have been evaluated using various theories and have been compared with experimentally determined speed of sound values in order to check the applicability of such theories to the liquid mixture systems under study. Viscosity data have been used to test the applicability of standard viscosity models of Grunberg–Nissan, Hind–Mc Laughlin, Katti–Chaudhary, Heric and Brewer, Frenkel, Tamura and Kurata at various temperatures for the binary liquid systems under study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Oswal SL, Oswal P, Shalak RP. Speed of sound, isentropic compressibilities and excess molar volumes of binary mixtures containing p-dioxane. J Solut Chem. 1998;27:507–20.

    Article  CAS  Google Scholar 

  2. Kumar H, Kaur M, Gaba R, Kaur K. Thermodynamics of binary liquid mixtures of cyclopentane with 2-propanol, 1-butanol and 2-butanol at different temperatures. J Therm Anal Calorim. 2011;105:1071–80.

    Article  CAS  Google Scholar 

  3. Zorebski E, Waligora A. Densities, excess molar volumes, and isobaric thermal expansibilities for 1,2-ethanediol + 1-butanol, or 1-hexanol, or 1-octanol in the temperature range from (293.15 to 313.15) K. J Chem Eng Data. 2008;53:591–5.

    Article  CAS  Google Scholar 

  4. Boruń A, Żurada M, Bald A. Densities and excess molar volumes for mixtures of methanol with other alcohols at temperatures (288.15–313.15 K). J Therm Anal Calorim. 2010;100:707–15.

    Article  CAS  Google Scholar 

  5. Dash SK, Pradhan SK, Dalai B, Moharana L, Swain BB. Studies on molecular interaction in binary mixtures of diethyl ether with some alkanols—an acoustic approach. Phys Chem Liq. 2012;50:735–49.

    Article  CAS  Google Scholar 

  6. Checoni RF. Excess molar enthalpy for methanol, ethanol, 1-propanol, 1-butanol + n-butylamine mixtures at 288.15 and 308.15 K at atmospheric pressure. J Therm Anal Calorim. 2010;101:349–57.

    Article  CAS  Google Scholar 

  7. Sreenivasulu K, Govinda V, Venkateswarlu P, Sivakumar K. Thermodynamic properties of non-electrolyte solutions. J Therm Anal Calorim. 2013; doi: 10.1007/s10973-013-3395-6.

  8. Savaroglu G, Aral E. Speeds of sound and isentropic compressibilities in binary mixtures of 2-propanol with several 1-alkanols at 298.15 K. Int J Thermophys. 2005;26(5):1525–35.

    Article  CAS  Google Scholar 

  9. Sastry SS, Babu S, Vishwam T, Parvateesam K, Tiong HS. Excess parameters for binary mixtures of ethyl benzoate with 1-propanol, 1-butanol and 1-pentanol at T = 303, 308, 313, 318, and 323 K. Phys B. 2013;420:40–8.

    Article  CAS  Google Scholar 

  10. Babu S, Sastry SVK, Tiong HS, Sastry SS. Experimental and theoretical studies of ultrasonic velocity in binary liquid mixtures of ethyl benzoate. J Chem. 2012;9(4):2309–14.

    Google Scholar 

  11. Sastry SVK, Babu S, Tiong HS, Sastry SS. Molecular interaction studies in ternary mixture of ethyl hydroxy benzoate by ultrasonic velocity measurements. Res J Pharm Biol Chem Sci. 2012;3(2):500–5.

    CAS  Google Scholar 

  12. Sastry SVK, Babu S, Tiong HS, Sastry SS. Ultrasonic investigation of molecular interactions in ternary mixtures at 303 K. J Chem Pharm Res. 2012;4(4):2122–5.

    CAS  Google Scholar 

  13. Glinski J, Chavepeyer G, Platten JK. Surface properties of diluted solutions of n-heptane, n-octanol and n-octanoic acid in nitromethane. Chem Phys. 2001;272:119–26.

    Article  CAS  Google Scholar 

  14. Salgado DG, Tovar CA, Cerdeirina CA, Carballo E, Romani L. Second-order excess derivatives for the 1,3-dichloropropane + n-dodecane system. Fluid Phase Equilib. 2002;199:121–34.

    Article  Google Scholar 

  15. Resa JM, Gonzalez C, Goenaga JM, Iglesias M. Influence of temperature on ultrasonic velocity measurements of ethanol + water + 1-propanol mixtures. J Therm Anal Calorim. 2007;87:237–45.

    Article  CAS  Google Scholar 

  16. Sharma S, Jasmin B, Ramani J, Patel R. Density, excess molar volumes and refractive indices of β-pinene with o, m, p-xylene and toluene at 303.15, 308.15 and 313.15 K. Phys Chem Liq. 2011;49:765–76.

    Article  CAS  Google Scholar 

  17. Redlich O, Kister AT. Algebraic representation of thermodynamic properties and the classification of solutions. Ind Eng Chem. 1948;40:345–8.

    Article  Google Scholar 

  18. Vogel AI. Text book of organic chemistry. 5th ed. New York: Wiley; 1989.

    Google Scholar 

  19. Vasudha K, Kumari DV, Yuvaraja G, Krishnaiah A. Excess volumes and viscosities for the binary systems of 2-propanol with alkyl acetates at 303.15 K. J Chem Pharm Res. 2011;3(5):108–15.

    CAS  Google Scholar 

  20. Mutalik V, Manjeshwar LS, Sairam M, Aminabhavi TM. Excess molar volumes, deviations in viscosity and refractive index of the binary mixtures of mesitylene with ethanol, propan-1-ol, propan-2-ol, butan-1-ol, pentan-1-ol, and 3-methylbutan-1-ol at 298.15, 303.15, and 308.15 K. J Mol Liq. 2006;129:147–54.

    Article  CAS  Google Scholar 

  21. Sreekanth K, Kondaiah M, Kumar DS, Rao DK. Influence of temperature on thermodynamic properties of acid–base liquid mixtures. J Therm Anal Calorim. 2012;110:1341–52.

    Article  CAS  Google Scholar 

  22. Mohan TM, Sastry SS, Murthy VRK. Thermodynamic, dielectric and conformational studies on hydrogen bonded binary mixtures of propan-1-ol with methyl benzoate and ethyl benzoate. J Solut Chem. 2011;40:131–46.

    Article  CAS  Google Scholar 

  23. Riddick JA, Bunger WB, Sakano TK. Techniques of chemistry. Organic solvents. 4th ed. New York: Wiley; 1986.

    Google Scholar 

  24. Aminabhavi TM, Phayde TSM, Khinnavar SR, Gopalakrishna B, Keith CH. Densities, refractive indices, speeds of sound, and shear viscosities of diethylene glycol dimethyl ether with ethyl acetate, methyl benzoate, ethyl benzoate, and diethyl succinate in the temperature range from 298.15 to 318.15 K. J Chem Eng Data. 1994;39:251–60.

    Article  CAS  Google Scholar 

  25. Chueh CF, Swanson AC. Estimated group contribution method. In: Reid RC, Prausnitz JM, Poling BE. The properties of gases and liquids. 4th ed. New York: McGraw Hill; 1987. pp 138

  26. Kiyohara O, Benson GC. Ultrasonic speeds and isentropic compressibilities of n-alkanol + n-heptane mixtures at 298.15 K. J Chem Thermodyn. 1979;11:861–73.

    Article  CAS  Google Scholar 

  27. Benson GC, Kiyohara O. Evaluation of excess isentropic compressibilities and isochoric heat capacities. J Chem Thermodyn. 1979;11:1061–4.

    Article  CAS  Google Scholar 

  28. Douheret G, Pal A, Davis MI. Ultrasonic speeds and isentropic functions of (a 2-alkoxyethanol + water) at 298.15 K. J Chem Thermodyn. 1990;22:99–108.

    Article  CAS  Google Scholar 

  29. Narendra K, Srinivasu Ch, Kalpana Ch, Narayanamurthy P. Excess thermo dynamical parameters of binary mixtures of toluene and mesitylene with anisaldehyde using ultrasonic technique at different temperatures. J Therm Anal Calorim. 2012;107:25–30.

    Article  CAS  Google Scholar 

  30. Pandey JD, Rai RD, Shukla RK, Shukla AK, Mishra N. Ultrasonic and thermodynamic properties of quaternary liquid system at 298.15 K. Indian J Pure Appl Phys. 1993;31:84–90.

    CAS  Google Scholar 

  31. Fort RJ, Moore WR. Adiabatic compressibilities in binary liquid mixtures. Trans Faraday Soc. 1965;61:2102–10.

    Article  CAS  Google Scholar 

  32. Gupta M, Vibhu I, Shukla JP. Ultrasonic velocity, viscosity and excess properties of binary mixture of tetrahydrofuran with 1-propanol and 2-propanol. Fluid Phase Equilib. 2006;244:26–32.

    Article  CAS  Google Scholar 

  33. Iloukhani H, Zoorasna N, Sloeimani R. Excess molar volumes and speeds of sound of tetrahydrofuran with chloroethanes or chloroethenes at 298.15 K. Phys Chem Liq. 2005;43:391–401.

    Article  CAS  Google Scholar 

  34. Bhatia SC, Rani R, Bhatia R, Anand H. Volumetric and ultrasonic behaviour of binary mixtures of 1-nonanol with o-cresol, m-cresol, p-cresol and anisole at T = (293.15 and 313.15) K. J Chem Thermodyn. 2011;43:479–86.

    Article  CAS  Google Scholar 

  35. García B, Aparicio S, Navarro AM, Alcalde R, Leal JM. Measurements and modeling of thermophysical behavior of (C1–C4) alkylbenzoate/(C1–C11) alkan-1-ol mixed solvents. J Phys Chem B. 2004;108:15841–50.

    Article  CAS  Google Scholar 

  36. Narendra K, Srinivasu Ch, Fakruddin Sk, Narayanamurthy P. Excess parameters of binary mixtures of anisaldehyde with o-cresol, m-cresol and p-cresol at T = (303.15, 308.15, 313.15, and 318.15) K. J Chem Thermodyn. 2011;43:1604–11.

    Article  CAS  Google Scholar 

  37. Oswal SL, Pandiyan V, Kumar BK, Vasantharani P. Thermodynamic and acoustic properties of binary mixtures of oxolane with aniline and substituted anilines at 303.15, 313.15 and 323.15 K. Thermochim Acta. 2010;507:27–34.

    Article  CAS  Google Scholar 

  38. Subha MCS, Swamy GN, Bal ME, Rao KSKV. Excess volume and viscosity of ethoxy ethanol with n-butylamine, sec-butylamine, tert-butylamine, n-hexylamine, n-octylamine and cyclohexylamine. Indian J Chem A. 2004;43:1876–81.

    Google Scholar 

  39. Narendra K, Srinivasu Ch, Narayanamurthy P. Excess properties of binary mixtures of o-xylene, m-xylene and p-xylene with anisaldehyde at different temperatures. J Appl Sci. 2012;12(2):136–44.

    Article  CAS  Google Scholar 

  40. Nomoto O. Empirical formula for sound velocity in binary liquid mixtures. J Phys Soc Jpn. 1958;13:1528–32.

    Article  CAS  Google Scholar 

  41. Baluja S, Parrania PH. Acoustical properties of 3-α-furyl acrylic acid in protic and aprotic solvents. Asian J Chem. 1995;7:417–23.

    CAS  Google Scholar 

  42. Van Dael W, Vangeel E. Theory of ultrasound. In: Van Deal W. Thermodynamic properties and velocity of sound, London: Butterworth; 1975, Chap. 5.

  43. Junjie Z. Junjie’s theory of ultrasound. In: Savaroglu G, Aral E. Densities, speeds of sound and isentropic compressibilities of the ternary mixture of 2-propanol + acetone + cyclohexane and the constituent binary mixtures at 298.15 K and 303.15 K. Fluid Phase Equilib. 2004;215:253–62.

    Google Scholar 

  44. Junjie Z. J. China. Univ. Sci. Technol. 1984;14:298–300.

    Google Scholar 

  45. Jacobson B. Ultrasonic velocity in liquids and liquid mixtures. J Chem Phys. 1952;20:927–8.

    Article  CAS  Google Scholar 

  46. Rao GVR, Sarma AVV, Krishna JS, Rambabu C. Theoretical evaluation of ultrasonic velocities in binary liquid mixtures of o-chlorophenol at different temperatures. Indian J Pure Appl Phys. 2005;43:345–54.

    CAS  Google Scholar 

  47. Grunberg L, Nissan AH. Mixture law for viscosity. Nature. 1949;164:799–800.

    Article  CAS  Google Scholar 

  48. Hind RK, Mc Laughlin E, Ubbelohde AR. Structure and viscosity of liquids camphor + pyrene mixtures. Trans Faraday Soc. 1960;56:328–30.

    Article  CAS  Google Scholar 

  49. Katti PK, Chaudhari MM. Viscosities of binary mixtures of benzyl acetate with dioxane, aniline and m-cresol. J Chem Eng Data. 1964;9:442–3.

    Article  CAS  Google Scholar 

  50. Heric EL, Brewer JC. On the viscosity of ternary mixtures. J Chem Eng Data. 1966;11:66–8.

    Article  CAS  Google Scholar 

  51. Frenkel YI. Theory of the viscosity of liquid mixtures. Petroleum. 1946;9:27.

    Google Scholar 

  52. Tamura M, Kurata M. On the viscosity of binary mixture of liquids. Bull Chem Soc Jpn. 1952;25:32–8.

    Article  Google Scholar 

  53. Mohan TM, Sastry SS, Murthy VRK. Conformational and dielectric relaxation studies on hydrogen bonded binary mixture of isopropyl alcohol in methyl benzoate and ethyl benzoate. J Mol Struct. 2010;973:157–62.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Project No.: ERIP/ER/0703688/M/01/1134, dated 31-03-2010 of DRDO and UGC DRS LEVEL III program No. F.530/1/DRS/2009 (SAP-I), dated 09-02-2009 New Delhi, to the department of Physics, ANU for providing financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sreehari Sastry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sastry, S.S., Babu, S., Vishwam, T. et al. Excess parameters for binary mixtures of alkyl benzoates with 2-propanol at different temperatures. J Therm Anal Calorim 116, 923–935 (2014). https://doi.org/10.1007/s10973-013-3570-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-3570-9

Keywords

Navigation