Skip to main content
Log in

Thermal decomposition of polyhedral oligomeric octaphenyl, octa(nitrophenyl), and octa(aminophenyl) silsesquioxanes

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The mechanisms of the thermal degradation of polyhedral oligomeric octaphenylsilsesquioxane (OPS), octa(nitrophenyl)silsesquioxane (ONPS), and octa(aminophenyl)silsesquioxane (OAPS) were investigated. The –NO2 or –NH2 substituents on the phenyl group affected the mechanism of the POSS thermal degradation. The thermal stabilities of OPS, ONPS, and OAPS were characterized by TG and FTIR. Thermal degradation of OPS included mainly the degradation of caged polyhedral oligomeric silsesquioxane structures and phenyl groups. Nitro or amino substituents decreased its thermal stability. The thermal degradation processes of OPS, ONPS, and OAPS differed. Phenyl groups and cyclobutadiene were observed in the OPS degradation products. Oxygen radicals that caused intensive CO2 release between 350 and 450 °C were generated by the degradation of ONPS –NO2. OAPS released mainly aminophenyl groups at 370 °C, whereas a small number of phenyl groups decomposed at 500 °C. The OAPS reactivity could enhance the thermal stability of POSS structure in the polyimide OAPS composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 1
Fig. 9

Similar content being viewed by others

References

  1. Lickiss PD, Rataboul F. Advances in organometallic chemistry. Adv Organomet Chem. 2008;57:1–116.

    CAS  Google Scholar 

  2. Laine RM, Roll MF. Polyhedral phenylsilsesquioxanes. Macromolecules. 2011;44(5):1073–109.

    Article  CAS  Google Scholar 

  3. Cordes DB, Lickiss PD, Rataboul F. Recent developments in the chemistry of cubic polyhedral oligosilsesquioxanes. Chem Rev. 2010;110:2081–173.

    Article  CAS  Google Scholar 

  4. Blanco I, Abate L, Bottino FA, Bottino P, Chiacchio MA. Thermal degradation of differently substituted cyclopentyl polyhedral oligomeric silsesquioxane (CP-POSS) nanoparticles. J Therm Anal Calorim. 2012;107:1083–91.

    Article  CAS  Google Scholar 

  5. Cho HS, Liang KW, Chatterjee S, Pittman CU. Synthesis, morphology, and viscoelastic properties of polyhedral oligomeric silsesquioxane nanocomposites with epoxy and cyanate ester matrices. J Inorg Organomet P. 2006;15:541–53.

    Article  CAS  Google Scholar 

  6. Liu HZ, Zheng SX. Polyurethane networks nanoreinforced by polyhedral oligomeric silsesquioxane. Macromol Rapid Commun. 2005;26:196–200.

    Article  CAS  Google Scholar 

  7. Guo HQ, Meador MA, McCorkle L. Polyimide aerogels cross-Linked through amine functionalized polyoligomeric silsesquioxane. ACS Appl Mater Interfaces. 2011;3:546–52.

    Article  CAS  Google Scholar 

  8. Villanueva M, Martin-Iglesias JL, Rodriguez-Anon JA, Proupin-Castineiras J. Thermal study of an epoxy system DGEBA (n = 0)/MXDA modified with POSS. J Therm Anal Calorim. 2009;96:575–82.

    Article  CAS  Google Scholar 

  9. Ramasundaram SP, Kim KJ. In-situ synthesis and characterization of polyamide 6/POSS nanocomposites. Macromol Symp. 2007;249:295–302.

    Article  CAS  Google Scholar 

  10. Chou CH, Hsu SL, Dinakaran K, Chiu MY, Wei KH. Synthesis and characterization of luminescent polyfluorenes incorporating side-chain-tethered polyhedral oligomeric silsesquioxane units. Macromolecules. 2005;38:745–51.

    Article  CAS  Google Scholar 

  11. Iyer S, Schiraldi DA. Role of specific interactions and solubility in the reinforcement of bisphenol A polymers with polyhedral oligomeric silsesquioxanes. Macromolecules. 2007;40:4942–52.

    Article  CAS  Google Scholar 

  12. Zhao YQ, Schiraldi DA. Thermal and mechanical properties of polyhedral oligomeric silsesquioxane (POSS)/polycarbonate composites. Polymer. 2005;46:11640–7.

    Article  CAS  Google Scholar 

  13. Blanco I, Abate L, Bottino FA. Variously substituted phenyl hepta cyclopentyl-polyhedral oligomeric silsesquioxane (ph, hcp-POSS)/polystyrene (PS) nanocomposites. J Therm Anal Calorim. 2013;112:421–8.

    Article  CAS  Google Scholar 

  14. Lu SY, Hamerton I. Recent developments in the chemistry of halogen-free flame retardant polymers. Prog Polym Sci. 2002;27:1661–72.

    Article  CAS  Google Scholar 

  15. Jiang YY, Li XM, Yang RJ. Polycarbonate composites flame-retarded by polyphenylsilsesquioxane of ladder structure. J Appl Polym Sci. 2012;124:4381–8.

    Article  CAS  Google Scholar 

  16. Jiang YY, Zhang X, He JY, Li XM, Yang RJ. Effect of polyphenylsilsesquioxane on the ablative and flame-retardation properties of ethylene propylene diene monomer (EPDM) composite. Polym Degrad Stabil. 2011;96:949–54.

    Article  CAS  Google Scholar 

  17. Zhang WC, Li XM, Yang RJ. Novel flame retardancy effects of DOPO-POSS on epoxy resins. Polym Degrad Stabil. 2011;96:2167–73.

    Article  CAS  Google Scholar 

  18. Zhang WC, Li XM, Yang RJ. Pyrolysis and fire behaviour of epoxy resin composites based on a phosphorus-containing polyhedral oligomeric silsesquioxane (DOPO-POSS). Polym Degrad Stabil. 2011;96:1821–32.

    Article  CAS  Google Scholar 

  19. Bolln C, Tsuchida A, Frey H, Ulhaupt RM. Thermal properties of the homologous series of eight fold alkyl-substituted octasilsesquioxanes. Chem Mater. 1997;9:1475–9.

    Article  CAS  Google Scholar 

  20. Mantz RA, Jones PF, Chaffee KP, Lichtenhan JD, Gilman JW. Thermolysis of polyhedral oligomeric silsesquioxane (POSS) macromers and POSS-siloxane copolymers. Chem Mater. 1996;8:1250–9.

    Article  CAS  Google Scholar 

  21. Fina A, Tabuani D, Camiato F, Frache A, Boccaleri E, Camino G. Polyhedral oligomeric silsesquioxanes (POSS) thermal degradation. Thermochim Acta. 2006;440:36–42.

    Article  CAS  Google Scholar 

  22. Fina A, Tabuani D, Frache A, Boccaleri E, Camino G. Fire retardancy of polymers: new applications of mineral fillers. Cambridge: Royal Society of Chemistry; 2005.

    Google Scholar 

  23. Fan HB, Li XM, Liu YL, Yang RJ. Thermal curing and degradation mechanism of polyhedral oligomeric octa(propargylaminophenyl)silsesquioxane. Polym Degrad Stabil. 2013;98:281–7.

    Article  CAS  Google Scholar 

  24. Fan HB, Yang RJ. Synthesis improvement and characterization of polyhedral oligomeric octa(aminophenyl)silsesquioxane. Polym Meter Sci Eng. 2012;28:144–7.

    CAS  Google Scholar 

  25. Fan HB, Yang RJ, Li XM. Purity analysis of polyhedral oligomeric octa(nitrophenyl)silsesquioxane. Acta Chim Sinica. 2012;70:1737–42.

    Article  CAS  Google Scholar 

  26. Fan HB, Li DH, Yang RJ. Synthesis improvement and characterization of polyhedral oligomeric octa(aminophenyl)silsesquioxane. Acta Chim Sinica. 2012;70:429–35.

    Article  CAS  Google Scholar 

  27. Fan HB, Yang RJ. Synthesis and characterization of polyhedral oligomeric azido-cctaphenylsilsesquioxane. J Appl Polym Sci. 2012;124:4389–97.

    Article  CAS  Google Scholar 

  28. Fan HB, Yang RJ. Flame-retardant polyimide cross-linked with polyhedral oligomeric octa(aminophenyl)silsesquioxane. Ind Eng Chem Res. 2013;53:2493–500.

    Article  CAS  Google Scholar 

  29. Chomel AD, Jayasooriya UA, Babonneau F. Solid state effects in the IR spectrum of octahydridosilasesquioxane. Spectrochim Acta Part A. 2004;60:1609–16.

    Article  CAS  Google Scholar 

  30. Eklund PC, Golden JM, Jishi RA. Vibrational-modes of carbon nanotubes-spectroscopy and theory. Carbon. 1995;33:959–72.

    Article  CAS  Google Scholar 

  31. Galvez A, Herlin-Boime N, Reynaud C, Clinard C, Rouzaud JN. Carbon nanoparticles from laser pyrolysis. Carbon. 2002;40(2775–8):9.

    Google Scholar 

  32. Jang BN, Wilkie CA. A TG/FTIR and mass spectral study on the thermal degradation of bisphenol A polycarbonate. Polym Degrad Stab. 2004;86:419–30.

    Article  CAS  Google Scholar 

  33. Wang X, Hu Y, Song L, Xing WY, Lu HD, Lv P, Jie GX. Flame retardancy and thermal degradation mechanism of epoxy resin composites based on a DOPO substituted organophosphorus oligomer. Polymer. 2010;51:2435–45.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongjie Yang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 639 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, H., Yang, R. Thermal decomposition of polyhedral oligomeric octaphenyl, octa(nitrophenyl), and octa(aminophenyl) silsesquioxanes. J Therm Anal Calorim 116, 349–357 (2014). https://doi.org/10.1007/s10973-013-3554-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-3554-9

Keywords

Navigation