Skip to main content
Log in

Thermal and structural investigation of random ethylene/1-hexene copolymers with high 1-hexene content

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Random ethylene/1-hexene copolymers with the 1-hexene content in the range from 2 to 28 mol% were produced with a novel post-metallocene catalyst and analyzed by three techniques, FTIR, 13C NMR, and DSC. The 1-hexene content and the sequence distribution in the copolymers were determined by means of FTIR-M and 13C NMR. The crystallization behavior of the copolymers was studied by DSC under dynamic and isothermal conditions; the Avrami model was used to analyze the crystallization kinetics. It was found that both the 1-hexene content and the crystallization temperature affect the relative crystallinity. The bulk crystallization rate decreases with the 1-hexene content and reduces exponentially with an increase of T c. The melting behavior of isothermally crystallized samples was also investigated and it was found that the melting temperatures of the copolymers under equilibrium conditions were related to the composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ko YS, Jeon J-K, Yim J–H, Park Y–K. Chemical compositional distribution of ethylene-1-butene copolymer prepared with heterogeneous Ziegler–Natta catalyst: TREF and crystaf analysis. Macromol Res. 2009;17(5):296–300.

    Article  CAS  Google Scholar 

  2. Hung J, Cole AP, Waymouth RM. Control of sequence distribution of ethylene copolymers: Influence of comonomer sequence on the melting behavior of ethylene copolymers. Macromolecules. 2003;36(7):2454–63.

    Article  CAS  Google Scholar 

  3. Mirabella FM. Correlation of the melting behavior and copolymer composition distribution of Ziegler–Natta-catalyst and single-site-catalyst polyethylene copolymers. J Polym Sci B. 2001;39(22):2800–18.

    Article  CAS  Google Scholar 

  4. Zhang M, Lynch DT, Wanke SE. Characterization of commercial linear low-density polyethylene by TREF-DSC and TREF-SEC cross-fractionation. J Appl Polym Sci. 2000;75(7):960–7.

    Article  CAS  Google Scholar 

  5. Piel C, Starck P, Seppälä JV, Kaminsky W. Thermal and mechanical analysis of metallocene-catalyzed ethene–α-olefin copolymers: the influence of the length and number of the crystallizing side chains. J Polym Sci A. 2006;44(5):1600–12.

    Article  CAS  Google Scholar 

  6. Schweier G, Brintzinger H–H. Metallocene catalysts for the polymerization and copolymerization of α-olefins: a research collaboration project report. Macromol Symp. 2001;173(1):89–104.

    Article  CAS  Google Scholar 

  7. Alt GH, Köppl A. Effect of the nature of metallocene complexes of group IV metals on their performance in catalytic ethylene and propylene polymerization. Chem Rev. 2000;100(4):1205–22.

    Article  CAS  Google Scholar 

  8. Feng L, Kamal MR. Crystallization and melting behavior of homogeneous and heterogeneous linear low-density polyethylene resins. Polym Eng Sci. 2005;45(8):1140–51.

    Article  CAS  Google Scholar 

  9. Gibson VC, Spitzmesser SK. Advances in non-metallocene olefin polymerization catalysis. Chem Rev. 2003;103(1):283–315.

    Article  CAS  Google Scholar 

  10. Alamo R, Domszy R, Mandelkern L. Thermodynamic and structural properties of copolymers of ethylene. J Phys Chem. 1984;88(26):6587–95.

    Article  CAS  Google Scholar 

  11. Schouterden P, Groeninckx G, Van der Heijden B, Jansen F. Fractionation and thermal behaviour of linear low density polyethylene. Polymer. 1987;28(12):2099–104.

    Article  CAS  Google Scholar 

  12. Androsch R. Melting and crystallization of poly(ethylene-co-octene) measured by modulated d.s.c. and temperature-resolved X-ray diffraction. Polymer. 1999;40(10):2805–12.

    Article  CAS  Google Scholar 

  13. Crist B, Claudio ES. Isothermal crystallization of random ethylene-butene copolymers: Bimodal kinetics. Macromolecules. 1999;32(26):8945–51.

    Article  CAS  Google Scholar 

  14. Alizadeh A, Richardson L, Xu J, McCartney S, Marand H, Cheung YW, Chum S. Influence of structural and topological constraints on the crystallization and melting behavior of polymers. 1. Ethylene/1-octene copolymers. Macromolecules. 1999;32(19):6221–35.

    Article  CAS  Google Scholar 

  15. Zhang M, Lynch DT, Wanke SE. Effect of molecular structure distribution on melting and crystallization behavior of 1-butene/ethylene copolymers. Polymer. 2001;42(7):3067–75.

    Article  CAS  Google Scholar 

  16. Alamo R, Mandelkern L. Origins of endothermic peaks in differential scanning calorimetry. J Polym Sci B. 1986;24(9):2087–105.

    Article  CAS  Google Scholar 

  17. Isasi JR, Haigh JA, Graham JT, Mandelkern L, Alamo RG. Some aspects of the crystallization of ethylene copolymers. Polymer. 2000;41(25):8813–23.

    Article  CAS  Google Scholar 

  18. Chiari YL, Vadlamudi M, Chella R, Jeon K, Alamo RG. Overall crystallization kinetics of polymorphic propylene-ethylene random copolymers: a two-stage parallel model of Avrami kinetics. Polymer. 2007;48(11):3170–82.

    Article  CAS  Google Scholar 

  19. Razavi-Nouri M, Hay JN. Isothermal crystallization kinetics and melting behavior of metallocene-catalyzed polyethylenes. Iran Polym J. 2007;16(2):105–12.

    CAS  Google Scholar 

  20. Crist B, Howard PR. Crystallization and melting of model ethylene-butene copolymers. Macromolecules. 1999;32(9):3057–67.

    Article  CAS  Google Scholar 

  21. Crist B, Williams DN. Crystallization and melting of model ethylene-butene random copolymers: thermal studies. J Macromol Sci B. 2000;39(1):1–13.

    Article  Google Scholar 

  22. Alamo RG, Mandelkern L. The crystallization behavior of random copolymers of ethylene. Thermochim Acta. 1994;238:155–201.

    Article  CAS  Google Scholar 

  23. Vadlamudi M, Alamo RG, Fiscus DM, Varma-Nair M. Inter and intra-molecular branching distribution of tailored LLDPEs inferred by melting and crystallization behavior of narrow fractions. J Therm Anal Calorim. 2009;96(3):697–704.

    Article  CAS  Google Scholar 

  24. Matsko MA, Vanina MP, Echevskaya LG, Zakharov VA. Study of the compositional heterogeneity of ethylene-hexene-1 copolymers by thermal fractionation technique by means of differential scanning calorimetry. J Therm Anal Calorim. 2013;113(2):923–32.

    Article  CAS  Google Scholar 

  25. Zhai YM, Wang Y, Yang W, Xie BH, Yang MB. A thermal method for quantitatively determinating the content of short chain branching in ethylene/α-olefin copolymers. J Therm Anal Calorim. 2012;110(3):1389–94.

    Article  CAS  Google Scholar 

  26. Forte C, Hayatifar M, Pampaloni G, Raspolli Galletti AM, Renili F, Zacchini S. Ethylene polymerization using novel titanium catalytic precursors bearing N,N-dialkylcarbamato ligands. J Polym Sci A. 2011;49(15):3338–45.

    Article  CAS  Google Scholar 

  27. Hayatifar M, Forte C, Pampaloni G, Kissin YV, Raspolli Galletti AM, Zacchini S. Titanium complexes bearing carbamato ligands as catalytic precursors for propylene polymerization reactions. J Polym Sci A. 2013;51(19):4095–102.

    Article  CAS  Google Scholar 

  28. Hayatifar M, Pampaloni G, Bernazzani L, Capacchione C, Kissin YV, Raspolli Galletti AM. A new type of post-metallocene for alkene polymerization. Copolymerization of ethylene with 1-hexene with titanium complexes bearing N,N-dialkylcarbamato ligands. Polym Int. 2013;. doi:10.1002/pi.4558.

    Google Scholar 

  29. Krumme A, Lehtinen A, Adamovsky S, Schick C, Roots J, Viikna A. Crystallization behavior of some unimodal and bimodal linear low-density polyethylenes at moderate and high supercooling. J Polym Sci B. 2008;46(15):1577–88.

    Article  CAS  Google Scholar 

  30. Paredes B, Soares JBP, van Grieken R, Carrero A, Suarez I. Characterization of ethylene-1-hexene copolymers made with supported metallocene catalysts: influence of support type. Macromol Symp. 2007;257(1):103–11.

    Article  CAS  Google Scholar 

  31. Mirabella FM. Crystallization and melting of polyethylene copolymers: differential scanning calorimetry and atomic force microscopy studies. J Polym Sci B. 2006;44(17):2369–88.

    Article  CAS  Google Scholar 

  32. Czaja K, Sacher B, Bialek M. Studies of intermolecular heterogeneity distribution in ethylene/1-hexene copolymers using DSC method. J Therm Anal Calorim. 2002;67(3):547–54.

    Article  CAS  Google Scholar 

  33. Czaja K, Bialek M. Microstructure of ethylene-1-hexene and ethylene-1-octene copolymers obtained over Ziegler–Natta catalysts supported on MgCl2(THF)2. Polymer. 2001;42(6):2289–97.

    Article  CAS  Google Scholar 

  34. Kim M-H, Phillips PJ. Nonisothermal melting and crystallization studies of homogeneous ethylene/α-olefin random copolymers. J Appl Polym Sci. 1998;70(10):1893–905.

    Article  CAS  Google Scholar 

  35. Pracella M, D’Alessio A, Giaiacopi S, Raspolli Galletti AM, Carlini C, Sbrana G. FTIR microanalysis and phase behavior of ethylene/1-hexene random copolymers. Macromol Chem Phys. 2007;208(14):1560–71.

    Article  CAS  Google Scholar 

  36. Geppi M, Forte C. The SPORT-NMR software: a tool for determining relaxation times in unresolved NMR spectra. J Magn Reson. 1999;137(1):177–85.

    Article  CAS  Google Scholar 

  37. Hsieh ET, Randall JC. Monomer sequence distributions in ethylene-1-hexene copolymers. Macromolecules. 1982;15(5):1402–6.

    Article  CAS  Google Scholar 

  38. Krimm S. Infrared spectra of high polymers. Fortschr Hochpolym Forsch. 1960;2:51–172.

    Article  CAS  Google Scholar 

  39. Boerio FJ, Wirasate S. Measurements of the chemical characteristics of polymers and rubbers by vibrational spectroscopy. In: Chalmers JM, Griffiths PR, editors. Handbook of vibrational spectroscopy, vol. 4. Chichester: Wiley; 2002. p. 1–29.

    Google Scholar 

  40. Koenig JL. Spectroscopy of polymers. Amsterdam: Elsevier; 1999.

    Google Scholar 

  41. Burfield DR. Correlation between crystallinity and ethylene content in LLDPE and related ethylene copolymers: demonstration of the applicability of a simple empirical relationship. Macromolecules. 1987;20(12):3020–3.

    Article  CAS  Google Scholar 

  42. Bartczak Z, Chiono M, Pracella M. Blends of propylene-ethylene and propylene-1-butene random copolymers: I. Morphology and structure. Polymer. 2004;45(22):7549–61.

    Article  CAS  Google Scholar 

  43. Avrami M. Kinetics of phase change. I General theory. J Chem Phys. 1939;7(12):1103–12.

    Article  CAS  Google Scholar 

  44. Avrami M. Kinetics of phase change. II Transformation-time relations for random distribution of nuclei. J Chem Phys. 1940;8(2):212–24.

    Article  CAS  Google Scholar 

  45. Avrami M. Granulation, phase change, and microstructure kinetics of phase change III. J Chem Phys. 1941;9(2):177–84.

    Article  CAS  Google Scholar 

  46. Lorenzo AT, Arnal ML, Albuerne J, Müller AJ. DSC isothermal polymer crystallization kinetics measurements and the use of the Avrami equation to fit the data: guidelines to avoid common problems. Polym Testing. 2007;26(2):222–31.

    Article  CAS  Google Scholar 

  47. Wunderlich B. Macromolecular Physics, vol. 2. New York: Academic Press; 1976. p. 115–347.

    Book  Google Scholar 

  48. Clas S-D, Heiding RD, McFaddin DC, Russell KE, Scammell-Bullock MV, Kelusky EC, St-Cyr D. Crystallinities of copolymers of ethylene and 1-alkenes. J Polym Sci B. 1988;26(6):1271–86.

    Article  CAS  Google Scholar 

  49. Young RJ, Lovell PA. Introduction to polymers. London: Chapman and Hall; 1991 Chapter 4.

    Book  Google Scholar 

  50. Hatakeyama T, Liu Z. Handbook of thermal analysis. Chichester: John Wiley; 1998.

    Google Scholar 

  51. Alamo RG, Viers BD, Mandelkern L. A re-examination of the relation between the melting temperature and the crystallization temperature: linear polyethylene. Macromolecules. 1995;28(9):3205–13.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support of the Ministero dell’Istruzione, dell’Università e della Ricerca (MIUR, Roma) is gratefully acknowledged. The authors thank Prof. A. J. Müller (Universidad Simón Bolívar, Baruta) for supplying Avrami plugin for Microcal Origin and Prof. M. Pracella (Institute of Composite and Biomedical Materials, IMCB-CNR, Pisa) for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hayatifar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayatifar, M., Bernazzani, L. & Raspolli Galletti, A.M. Thermal and structural investigation of random ethylene/1-hexene copolymers with high 1-hexene content. J Therm Anal Calorim 115, 1711–1718 (2014). https://doi.org/10.1007/s10973-013-3445-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-3445-0

Keywords

Navigation