Skip to main content
Log in

A dynamic technique for the measurement of thermal conductivity of molten salt based on cylindrical melting model

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This paper reports a dynamic testing technique for measuring the effective thermal conductivity of phase change materials close to the melting point aiming at the compensation for the absence of such data. Based on Stefan model, the time dependence of the position of the phase interface in a cylindrical melting process, which implies the thermal conductivity, was successfully determined with the aid of the perturbation method. Thereafter, a series of experiments were conducted on a well-designed testing system with excellent heat insulation to collect relevant data of sodium acetate trihydrate. To bridge the gap between the experimental and the actual values, a 3-dimensional, unsteady, numerical model, taking convection into consideration, was built on CFD code. Under necessary assumptions, this model allowed a better understanding of the role of the convection playing in the experiments. Accurate results of approximation to experimental data were obtained by continually adjusting the iterative value. The maximum deviation was limited in 9 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lane GA. Solar heat storage: latent heat materials. Boca Raton: CRC Press; 1983.

    Google Scholar 

  2. Farid MM, Khudhair AM, Razack SAK, Al-Hallaj S. A review on phase change energy storage: materials and applications. Energ Convers Manag. 2004;45:1597–615.

    Article  CAS  Google Scholar 

  3. Pillai KK, Brinkwarth BJ. The storage of low grade thermal energy using phase change materials. Appl Energ. 1976;2:205–16.

    Article  CAS  Google Scholar 

  4. Zeng JL, Gao Z, Yang DY, Sun LX, Zhang L. Thermal conductivity enhancement of Ag nanowires on an organic phase change material. J Therm Anal Calorim. 2010;101:385–9.

    Article  CAS  Google Scholar 

  5. Rady M. Granular phase change materials for thermal energy storage: experiments and numerical simulations. Appl Therm Eng. 2009;29:3149–59.

    Article  CAS  Google Scholar 

  6. Kravvaritis ED, Antonopoulos KA, Tzivanidis C. Experimental determination of the effective thermal capacity function and other thermal properties for various phase change materials using the thermal delay method. Appl Energ. 2011;88:4459–69.

    Article  CAS  Google Scholar 

  7. Oró E, Gracia AD, Castell A, Farid MM, Cabeza LF. Review on phase change materials (PCMs) for cold thermal energy storage applications. Appl Energ. 2012;99:513–33.

    Article  Google Scholar 

  8. Desgrosseilliers L, Whitman CA, Groulx D, White MA. Dodecanoic acid as a promising phase-change materials for thermal energy storage. Appl Therm Eng. 2013;53:37–41.

    Article  CAS  Google Scholar 

  9. Howell BA, Cho YJ. Thermal properties of poly(styrene) containing brominated aryl phosphate additives. J Therm Anal Calorim. 2006;85:73–8.

    Article  CAS  Google Scholar 

  10. Parameshwaran R, Jayavel R, Kalaiselvam S. Study on thermal properties of organic ester phase-change material embedded with silver nanoparticles. J Therm Anal Calorim. 2013. doi:10.1007/s10973-013-3064-9.

    Google Scholar 

  11. Li M, Wu ZS. Thermal properties of the graphite/n-docosane composite PCM. J Therm Anal Calorim. 2013;. doi:10.1007/s10973-012-2218-5.

    Google Scholar 

  12. Zhang P, Kang M, Hu Y. Influence of layered zinc hydroxide nitrate on thermal properties of paraffin/intumescent flame retardant as a phase change material. J Therm Anal Calorim. 2013;112:1199–205.

    Article  CAS  Google Scholar 

  13. Wang N, Zhang XR, Zhu DS, Gao JW. The investigation of thermal conductivity and energy storage properties of graphite/paraffin composites. J Therm Anal Calorim. 2013;107:949–54.

    Article  Google Scholar 

  14. Zhou JM, Liu JJ, Lamvik M. An experimental method for measurement of the thermal conductivity of material at the melting/freezing point. Phys Exam Test. 1999;5:32–4.

    Google Scholar 

  15. Li CG, Zhou JM. A new method for dynamic measurement and calculation of thermophysical properties of metal materials at the melting point. Energ Metall Ind. 2003;22(4):57–61.

    Google Scholar 

  16. Li CG, Zhou JM. Medium/High melting metals: measurement of coefficient of thermal conductivity at the point of solid–liquid transition. Electron Compon Mater. 2003;22(10):42–5.

    Google Scholar 

  17. Zhan SQ, Zhou JM, Wu Y, Li Y, Liang YN, Yang Y. Dynamic measurement of thermophysical properties of molten salt and error correction method. J CIESC. 2012;63(8):2341–7.

    CAS  Google Scholar 

  18. Crank J. Free and moving boundary problems. Oxford: Clarendon Press; 1984.

    Google Scholar 

  19. Caldwell J, Kwan YY. On the perturbation method for the Stefan problem with time-dependent boundary conditions. Int J Heat Mass Trans. 2003;46:1497–501.

    Article  CAS  Google Scholar 

  20. Zhang RY. Phase change materials and phase change energy storage technology. Princeton, NJ: Science Press; 2009.

    Google Scholar 

  21. Kravvaritis ED, Antonopoulos KA, Tzivanidis C. Improvements to the measurement of the thermal properties of phase change materials. Meas Sci Technol. 2010;21:045103.

    Article  Google Scholar 

  22. Yang XH, Lu TJ, Kim T. Temperature effects on the effective thermal conductivity of phase change materials with two distinctive phases. Int Commun Heat Mass. 2011;38:1344–8.

    Article  CAS  Google Scholar 

  23. Keinänen M. Latent heat recovery from supercooled sodium acetate trihydrate using a brush heat exchanger. Master’s Thesis: Helsinki University of Technology, Helsinki; 2007 (in Finland).

    Google Scholar 

  24. Araki N, Futamura M, Makino A, Shibata H. Measurements of thermophysical properties of sodium acetate hydrate. Int J Thermophys. 1995;16(6):1455–66.

    Article  CAS  Google Scholar 

  25. Nie GH, Zhang ZY. Measurement of the thermal conductivities of CH3COONa·3H2O, CH3COOLi·2H2O, and Na2S2O3·5H2O in the temperature range from 10 °C to 80 °C. J. Northwest Univ. (Nat Sci). 2001;31(6):492–5.

    CAS  Google Scholar 

Download references

Acknowledgements

This study entirely funded by the National Natural Science Foundation of China under award number 50876116.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Peng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, W., Zhou, Jm., Li, Y. et al. A dynamic technique for the measurement of thermal conductivity of molten salt based on cylindrical melting model. J Therm Anal Calorim 115, 1767–1777 (2014). https://doi.org/10.1007/s10973-013-3386-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-3386-7

Keywords

Navigation