Skip to main content
Log in

The generation of carbon monoxide and carbonyl compounds in reconstituted tobacco sheet

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In recent years, reconstituted tobacco sheet (RTs) has played an increasingly significant role in tobacco industry. The yields of CO and carbonyl compounds (formaldehyde, acetaldehyde, acetone, acrolein, propanal, butenal, 2-butanone, and butyraldehyde) in cigarette mainstream smoke of RTs and their formation mechanisms were investigated in this paper. Self-made RTs (SRTs) was studied and compared with foreign Mauduit RTs (MRTs) and three commercial tobacco leaves on routine chemical constituents, thermal behavior, and subsequent gaseous products evolution. The cigarette smoking results illustrated that the yields of CO (2.9 mg per puff) and carbonyl compounds (about 208 μg per puff) in mainstream smoke of SRTs and MRTs were at the same level, and obviously higher than those of three commercial tobacco leaves. The routine chemical constituent results demonstrated that bright tobacco and oriental tobacco contained particularly higher contents of reducing sugar and total sugar than RTs, while burley tobacco had a high content of nitrogen compounds. The thermal behavior results showed that SRTs (11.6 % min−1) and MRTs (14.5 % min−1) presented higher maximum mass-loss rate than bright tobacco (7.8 % min−1), burley tobacco (7.1 % min−1), and oriental tobacco (6.8 % min−1). The thermal decomposition of saccharides and combustion of residual char played the most important roles in mass-loss and gaseous products formation. The decomposition of saccharides and incomplete combustion of carbonized residual char primarily contributed to the formation of CO, while carbonyl compounds evolution was mainly attributed to the decomposition of saccharides alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Thielen A, Klus H, Müller L. Tobacco smoke: unraveling a controversial subject. Exp Toxicol Pathol. 2008;60(2):141–56.

    Article  CAS  Google Scholar 

  2. Sun J, He J, Wu F, Tu S, Yan T, Si H, Xie H. Comparative analysis on chemical components and sensory quality of aging flue-cured tobacco from four main tobacco areas of China. Agric Sci China. 2011;10(8):1222–31.

    Article  CAS  Google Scholar 

  3. Han WJ, Zhao CS. The recent process of reconstituted tobacco by paper process. Heilongjiang paper. 2007;35(4):47–9. (In Chinese).

  4. Norman A. Cigarette design and materials. In: Davis DL, Nielsen MT, editors. Tobacco: production, chemistry and technology. Oxford: Blackwell Science Limited; 1999. p. 353–87.

    Google Scholar 

  5. Potts RJ, Bombick BR, Meckley DR, Ayres PH, Pence DH. A summary of toxicological and chemical data relevant to the evaluation of cast sheet tobacco. Exp Toxicol Pathol. 2010;62(2):117–26.

    Article  CAS  Google Scholar 

  6. Wynder EL, Hoffmann D. Reduction of tumorigenicity of cigarette smoke. JAMA. 1965;192(2):88.

    Article  CAS  Google Scholar 

  7. Hoffmann D, Tso T, Gori GB. The less harmful cigarette. Prev Med. 1980;9(2):287–96.

    Article  CAS  Google Scholar 

  8. Ge S, Xu Y, Tian Z, Zhou S, She S, Hu Y, Sheng L. Effect of urea phosphate on thermal decomposition of reconstituted tobacco and CO evolution. J Anal Appl Pyrolysis. 2012;99:178–83.

    Article  Google Scholar 

  9. Zhou S, Xu Y, Wang C, Tian Z. Pyrolysis behavior of pectin under the conditions that simulate cigarette smoking. J Anal Appl Pyrolysis. 2011;91:232–40.

    Article  CAS  Google Scholar 

  10. Zhou S, Wang C, Xu Y, Hu Y. The pyrolysis of cigarette paper under the conditions that simulate cigarette smouldering and puffing. J Therm Anal Calorim. 2011;104(3):1097–106.

    Article  CAS  Google Scholar 

  11. Sun W, Zhou Z, Li Y, Xu Z, Xia W, Zhong F. Differentiation of flue-cured tobacco leaves in different positions based on neutral volatiles with principal component analysis (PCA). Anal Bioanal Chem. 2012;235(4):745–52.

    CAS  Google Scholar 

  12. Zhou S, Ning M, Xu Y, Hu Y, Shu J, Wang C. Thermal degradation and combustion behavior of reconstituted tobacco sheet treated with ammonium polyphosphate. J Anal Appl Pyrolysis. 2013;100:223–9.

    Article  CAS  Google Scholar 

  13. Baker RR, Coburn S, Liu C, Tetteh J. Pyrolysis of saccharide tobacco ingredients: a TGA-FTIR investigation. J Anal Appl Pyrolysis. 2005;74(1–2):171–80.

    Article  CAS  Google Scholar 

  14. Liu C, Parry A. Potassium organic salts as burn additives in cigarettes. Beiträge zur Tabakforschung International. 2003;20(5):341–7.

    CAS  Google Scholar 

  15. ISO 4387: Cigarettes—determination of total and nicotine free dry particulate matter using a routine analytical smoking machine; Reference number ISO 4378:1991 (E), International Organization for Standardization: Geneva; 1991.

  16. Calafat A, Polzin G, Saylor J, Richter P, Ashley D, Watson C. Determination of tar, nicotine, and carbon monoxide yields in the mainstream smoke of selected international cigarettes. Tob Control. 2004;13(1):45–51.

    Article  CAS  Google Scholar 

  17. Schulte E. Determination of higher carbonyl compounds in used frying fats by HPLC of DNPH derivatives. Anal Bioanal Chem. 2002;372(5):644–8.

    Article  CAS  Google Scholar 

  18. Long WJ, Henderson Jr JW. Rapid separation and identification of carbonyl compounds by HPLC. Wilmington: Agilent Technologies; 2008. Publication No. 2008: 5988-6346EN.

  19. Zhang Y, Cong Q, Xie Y, Yang J, Zhao B. Quantitative analysis of routine chemical constituents in tobacco by near-infrared spectroscopy and support vector machine. Spectrochim Acta. 2008;71(4):1408–13.

    Article  Google Scholar 

  20. Goldsmith JR, Terzaghi J, Hackney JD. Evaluation of fluctuating carbon monoxide exposures: theoretical approach and a preliminary test of methods for studying effects on human populations of fluctuating exposures from multiple sources. Arch Environ Health. 1963;7(6):647–63.

    Article  CAS  Google Scholar 

  21. Baker RR. The generation of formaldehyde in cigarettes—overview and recent experiments. Food Chem Toxicol. 2006;44(11):1799–822.

    Article  CAS  Google Scholar 

  22. Talhout R, Opperhuizen A, Van Amsterdam JGC. Sugars as tobacco ingredient: effects on mainstream smoke composition. Food Chem Toxicol. 2006;44(11):1789–98.

    Article  CAS  Google Scholar 

  23. Torikaiu K, Uwano Y, Nakamori T, Tarora W, Takahashi H. Study on tobacco components involved in the pyrolytic generation of selected smoke constituents. Food Chem Toxicol. 2005;43(4):559–68.

    Article  CAS  Google Scholar 

  24. Clarke MB, Bezabeh DZ, Howard CT. Determination of carbohydrates in tobacco products by liquid chromatography-mass spectrometry/mass spectrometry: a comparison with ion chromatography and application to product discrimination. J Agric Food Chem. 2006;54(6):1975–81.

    Article  CAS  Google Scholar 

  25. Britt PF, Buchanan A, Owens CV, Todd Skeen J. Does glucose enhance the formation of nitrogen containing polycyclic aromatic compounds and polycyclic aromatic hydrocarbons in the pyrolysis of proline? Fuel. 2004;83(11):1417–32.

    Article  CAS  Google Scholar 

  26. Ishizu Y, Kaneki K, Izawa K. Smoke production from cell wall materials of tobacco leaves. Beitr Tabakforsch Int. 1991;15(1):1–10.

    CAS  Google Scholar 

  27. Fenner R. Thermoanalytical characterization of tobacco constituents. Rec Adv Tob Sci. 1988;14(42):82–113.

    Google Scholar 

  28. Sung YJ, Seo YB. Thermogravimetric study on stem biomass of Nicotiana tabacum. Thermochim Acta. 2009;486(1–2):1–4.

    Article  CAS  Google Scholar 

  29. Wang W, Wang Y, Yang L, Liu B, Lan M, Sun W. Studies on thermal behavior of reconstituted tobacco sheet. Thermochim Acta. 2005;437(1–2):7–11.

    Article  CAS  Google Scholar 

  30. Hajaligol M, Waymack B, Kellogg D. Formation of aromatic hydrocarbons from pyrolysis of carbohydrates. Prepr Pap Am Chem Soc, Div Fuel Chem. 1999;44:251–5.

    CAS  Google Scholar 

  31. Arockiasamy A, Toghiani H, Oglesby D, Horstemeyer M, Bouvard J, King RL. TG–DSC–FTIR–MS study of gaseous compounds evolved during thermal decomposition of styrene-butadiene rubber. J Therm Anal Calorim. 2013;111(1):535–42.

    Article  CAS  Google Scholar 

  32. Madhurambal G, Mariappan M, Hariharan S, Ramasamy P, Mojumdar S. Thermal and FTIR spectral studies of various proportions of zinc magnesium ammonium sulfate. J Therm Anal Calorim. 2013;112(2):1031–7.

    Article  CAS  Google Scholar 

  33. Madhurambal G, Prabha N, Lakshmi S, Mojumdar S, Thermal UV. FTIR, and XRD studies of urinary stones. J Therm Anal Calorim. 2013;112(2):1067–75.

    Article  CAS  Google Scholar 

  34. Buryan P, Staff M. Pyrolysis of the waste biomass. J Therm Anal Calorim. 2008;93(2):637–40.

    Article  CAS  Google Scholar 

  35. Fu P, Hu S, Xiang J, Li P, Huang D, Jiang L, Zhang A, Zhang J. FTIR study of pyrolysis products evolving from typical agricultural residues. J Anal Appl Pyrolysis. 2010;88(2):117–23.

    Article  CAS  Google Scholar 

  36. Biagini E, Barontini F, Tognotti L. Devolatilization of biomass fuels and biomass components studied by TG/FTIR technique. Ind Eng Chem Res. 2006;45(13):4486–93.

    Article  CAS  Google Scholar 

  37. Baker RR, Bishop LJ. The pyrolysis of tobacco ingredients. J Anal Appl Pyrolysis. 2004;71(1):223–311.

    Article  CAS  Google Scholar 

  38. Baker RR. Formation of carbon oxides during tobacco combustion: pyrolysis studies in the presence of isotopic gases to elucidate reaction sequence. J Anal Appl Pyrolysis. 1983;4(4):297–334.

    Article  CAS  Google Scholar 

  39. Baker RR. A review of pyrolysis studies to unravel reaction steps in burning tobacco. J Anal Appl Pyrolysis. 1987;11:555–73.

    Article  CAS  Google Scholar 

  40. Hajaligol M. Quantitative characterization of tobacco pyrolysis products using TG–FTIR. 2000. http://legacy.library.ucsf.edu/tid/kai92g00/pdf. Accessed 25 Dec 2012.

  41. Peng F, Sheng L, Liu B, Tong H, Liu S. Comparison of different extraction methods: steam distillation, simultaneous distillation and extraction and headspace co-distillation, used for the analysis of the volatile components in aged flue-cured tobacco leaves. J Chromatogr A. 2004;1040(1):1–17.

    Article  CAS  Google Scholar 

  42. Chen ZG, Cai B. Comparison between domestic and foreign paper-process sheets, Tob Sci Technol. 2002;(2):4–10. (In Chinese).

  43. Burton H, Childs G Jr. Thermal degradation of tobaccos. VII. Influence of atmosphere on the formation of gas phase constituents. Beitr Tabakforsch. 1977;9:45–52.

    CAS  Google Scholar 

Download references

Acknowledgements

The financial supports from China National Tobacco Corporation (No. 110200901002) and China Tobacco Shandong Industrial Corporation (No. 201101003) are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Zhong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, M., Xu, Z., Chen, G. et al. The generation of carbon monoxide and carbonyl compounds in reconstituted tobacco sheet. J Therm Anal Calorim 115, 961–970 (2014). https://doi.org/10.1007/s10973-013-3368-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-3368-9

Keywords

Navigation