Skip to main content
Log in

Influence of the synthesis parameters on the thermal behavior of some ZnO–starch composites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Ten ZnO–starch composites were synthesized using a simple precipitation methodology. The IR spectroscopy and XRD investigations reveal the presence of amorphous starch and crystalline ZnO. The obtained composites present a spherical morphology, 5–8 spheres being interconnected into aggregates. The thermal analysis demonstrates that starch decomposition and ZnO thermally induced nucleation and crystal growth depending on the synthesis parameters such as starch processing (dissolution or gelatinization), reaction temperature (80, 90, and 100 °C), reaction time (15 min or 6 h), and applied treatments (heating or ultrasound irradiation).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Liqiang J, Yichun Q, Baiqi W, Shudan L, Baojiang J, Libin Y, Wei F, Honggang F, Jiazhong S. Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity. Sol Energy Mater Sol Cells. 2006;90:1773–87.

    Article  Google Scholar 

  2. Xia YN, Yang PD, Sun YG, Wu YY, Mayers B, Gates B, Yin YD, Kim F, Yan HQ. One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater. 2003;15:353–89.

    Article  CAS  Google Scholar 

  3. Gao PX, Wang ZL. Mesoporous polyhedral cages and shells formed by textured self-assembly of ZnO nanocrystals. J Am Chem Soc. 2003;125:11299–305.

    Article  CAS  Google Scholar 

  4. Wang XD, Summers CJ, Wang ZL. Large-scale hexagonal-patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays. Nano Lett. 2004;4:423–6.

    Article  CAS  Google Scholar 

  5. Shen GZ, Bando Y, Lee CJ. Synthesis and evolution of novel hollow ZnO urchins by a simple thermal evaporation process. J Phys Chem B. 2005;109:10578–83.

    Article  CAS  Google Scholar 

  6. Ghoshal T, Kar S, Chaudhuri S. ZnO doughnuts: controlled synthesis, growth mechanism, and optical properties. Cryst Growth Des. 2007;7:136–41.

    Article  CAS  Google Scholar 

  7. Wu QZ, Chen X, Zhang P, Han YC, Chen XM, Yan YH, Li SP. Amino acid-assisted synthesis of ZnO hierarchical architectures and their novel photocatalytic activities. Cryst Growth Des. 2008;8:3010–8.

    Article  CAS  Google Scholar 

  8. Zhang J, Sun L, Yin J, Su H, Liao C, Yan C. Control of ZnO morphology via a simple solution route. Chem Mater. 2002;14:4172–7.

    Article  CAS  Google Scholar 

  9. Jang ES, Won JH, Hwang SJ, Choy JH. Fine tuning of the face orientation of ZnO crystals to optimize their photocatalytic activity. Adv Mater. 2006;18:3309–12.

    Article  CAS  Google Scholar 

  10. Cao MIY, Liu B, Huang R, Xia Z, Ge S. Flash synthesis of flower-like ZnO nanostructures by microwave-induced combustion process. Mater Lett. 2011;65:160–3.

    Article  CAS  Google Scholar 

  11. Wang Y, Zhang C, Bi S, Luo G. Preparation of ZnO nanoparticles using the direct precipitation method in a membrane dispersion micro-structured reactor. Powder Technol. 2010;202:30–6.

    Article  Google Scholar 

  12. Jezequel D, Guenot J, Jouini N, Fievet F. Submicrometer zinc oxide particles: elaboration in polyol medium and morphological characteristics. J Mater Res. 1995;10:77–83.

    Article  CAS  Google Scholar 

  13. Milosevic O, Uskokovic D. Synthesis of BaTiO3 and ZnO varistor precursor powders by reaction spray pyrolysis. Mater Sci Eng A. 1993;168:249–52.

    Article  Google Scholar 

  14. Spanhel L. Colloidal ZnO nanostructures and functional coatings: a survey. J Sol–Gel Sci Technol. 2006;39:7–24.

    Article  CAS  Google Scholar 

  15. Cheng HM, Hsu HC, Chen SL, Wu WT, Kao CC, Lin LJ, Hsieh WFJ. Efficient UV photoluminescence from monodispersed secondary ZnO colloidal spheres synthesized by sol–gel method. Cryst Growth. 2005;277:192–9.

    Article  CAS  Google Scholar 

  16. Ying KL, Hsieh TE, Hsieh YF. Colloidal dispersion of nano-scale ZnO powders using amphibious and anionic polyelectrolytes. Ceram Int. 2009;35:1165–71.

    Article  CAS  Google Scholar 

  17. Kaneko D, Shouji H, Kawai T, Kon-No K. Synthesis of ZnO particles by ammonia-catalyzed hydrolysis of zinc dibutoxide in nonionic reversed micelles. Langmuir. 2000;16:4086–9.

    Article  CAS  Google Scholar 

  18. Li X, HeG XiaoG, Liu H, Wang M. Synthesis and morphology control of ZnO nanostructures in microemulsions. J Colloid Interface Sci. 2009;333:465–73.

    Article  CAS  Google Scholar 

  19. Liu B, Zeng HC. Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm. J Am Chem Soc. 2003;125:4430–1.

    Article  CAS  Google Scholar 

  20. Du GH, Xu F, Yuan ZY, Van Tendeloo G. Flowerlike ZnO nanocones and nanowires: preparation, structure, and luminescence. Appl Phys Lett. 2006;88:243101.

    Article  Google Scholar 

  21. Ma J, Jiang C, Xiong Y, Xu G. Solvent-induced growth of ZnO microcrystals. Powder Technol. 2006;167:49–53.

    Article  CAS  Google Scholar 

  22. Cho S, Jung SH, Lee KH. Morphology-controlled growth of ZnO nanostructures using microwave irradiation: from basic to complex structures. J Phys Chem C. 2008;112:12769–76.

    Article  CAS  Google Scholar 

  23. Bauermann LP, del Campo A, Bill J, Aldinger F. Heterogeneous nucleation of ZnO using gelatin as the organic matrix. Chem Mater. 2006;18:2016–20.

    Article  Google Scholar 

  24. Liu B, Zeng HC. Room temperature solution synthesis of monodispersed single-crystalline ZnO nanorods and derived hierarchical nanostructures. Langmuir. 2004;20:4196.

    Article  CAS  Google Scholar 

  25. Kim C, Kim YJ, Jang ES, Yi GC, Kim HH. Whispering-gallery-modelike-enhanced emission from ZnO nanodisk. Appl Phys Lett. 2006;88:093104.

    Article  Google Scholar 

  26. Taubert A, Palms D, Weiss O, Piccini MT, Batchelder DN. Polymer-assisted control of particle morphology and particle size of zinc oxide precipitated from aqueous solution. Chem Mater. 2002;14:2594–601.

    Article  CAS  Google Scholar 

  27. Visinescu D, Patrinoiu G, Tirsoaga A, Carp O. Polysaccharides route: a new green strategy for oxides synthesis. In: Schwarbauer J, Lichtfouse E, editors. Environmentally chemistry for a sustainable world. Dordrecht: Springer; 2012. p. 119–69.

    Chapter  Google Scholar 

  28. Nistor MT, Vasile C. Influence of the nanoparticle type on the thermal decomposition of the green starch/poly(vinyl alcohol)/montmorillonite nanocomposites. J Therm Anal Calorim. 2013;111:1903–19.

    Article  CAS  Google Scholar 

  29. Fang JM, Fowler PA, Tomkinson J, Hill CAS. The preparation and characterization of a series of chemically modified potato starches. Carbohydr Polym. 2002;47:245–52.

    Article  CAS  Google Scholar 

  30. Ma XF, Yu JG, He K, Wang N. The effects of different plasticizers on the properties of thermoplastic starch as solid polymer electrolytes. Macromol Mater Eng. 2007;292:503–10.

    Article  CAS  Google Scholar 

  31. Nakamoto K. Infrared and Raman spectra of inorganic and coordination compounds. 4th ed. New York: Wiley; 1986.

    Google Scholar 

  32. Van Soest JJG, Tournois H, de Wit D, Vliegenthart JFG. Short-range structure in (partially) crystalline potato starch determined with attenuated total reflectance Fourier-transform IR spectroscopy. Carbohydr Res. 1995;279:201–14.

    Article  Google Scholar 

  33. Rubens P, Snauwaert J, Heremans K, Stute R. In situ observation of pressure-induced gelation of starches studied with FTIR in the diamond anvil cell. Carbohydr Polym. 1999;39:231.

    Article  CAS  Google Scholar 

  34. Sevenou O, Hill SE, Farhat IA, Mitchell JR. Organization of the external region of the starch granule as determined by infrared microscopy. Int J Biol Macromol. 2002;31:79–85.

    Article  CAS  Google Scholar 

  35. Aggarwal K, Dollimore D, Heaon K. Comparative thermal analysis of two biopolymers, starch and cellulose. J Therm Anal. 1997;50:7–17.

    Article  CAS  Google Scholar 

  36. Beninca C, Colman TAD, Lacerda LG, da Silva Carvalho Filho MA, Demiate IM, Bannach G, Schnitzler E. Thermal, rheological, and structural behaviors of natural and modified cassava starch granules, with sodium hypochlorite solutions. J Therm Anal Calorim. 2013;111:2217–22.

    Article  CAS  Google Scholar 

  37. Horváth E. Thermal analysis of starch for realizing embedded channel in low temperature co-fired ceramic. J Therm Anal Calorim. 2013. doi 10.1007/s10973-012-2877-2.

  38. Colman TAD, Demiate IM, Schnitzler E. The effect of microwave radiation on some thermal, rheological and structural properties of cassava starch. J Therm Anal Calorim. 2013. doi: 10.1007/s10973-012-2866-5.

  39. Belitz HD, Grosch W, Schieberle P. Food chemistry. 4th ed. Berlin: Springer; 2009.

    Google Scholar 

  40. Sujka M, Jamroz J. Ultrasound-treated starch: SEM and TEM imaging, and functional behavior. Food Hydrocolloids. 2013;31:413–9.

    Article  CAS  Google Scholar 

  41. Iida Y, Tuziuti T, Yasui K, Towata A, Kozuka T. Control of viscosity in starch and polysaccharide solutions with ultrasound after gelatinization. Innov Food Sci Emerg Technol. 2008;9:140–6.

    Article  CAS  Google Scholar 

  42. Marinkivic ZV, Mancic L, Milosevic O. The nature of structural changes in nanocrystalline ZnO powders under linear heating conditions. J Eur Ceram Soc. 2004;24:1929–33.

    Article  Google Scholar 

Download references

Acknowledgements

The paper done within the research program: “Biophysical and green chemistry applications” of the “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy was supported by a grant of the Romanian National Authority for Scientific Research, CNCS-UEFISCDI, project number PN-II-ID-PCE-2011-3-0473.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oana Carp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jurca, B., Tirsoaga, A., Ianculescu, A. et al. Influence of the synthesis parameters on the thermal behavior of some ZnO–starch composites. J Therm Anal Calorim 115, 495–501 (2014). https://doi.org/10.1007/s10973-013-3290-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-3290-1

Keywords

Navigation