Skip to main content
Log in

Investigation of structure and thermal stability of surfactant-modified Al-pillared montmorillonite

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

For combining the properties of organoclays and pillared clays, inorganic–organic clays have attracted much attention in recent years. In this study, Al Keggin cation pillared montmorillonites (Al-Mts) were first prepared and parts of Al-Mts were calcined at different temperatures (C-Al-Mts). The inorganic–organic montmorillonites were synthesized by intercalating Al-Mts and C-Al-Mts with the cationic surfactant, hexadecyltrimethyl ammonium bromide (HDTMAB). The products were characterized by X-ray diffraction, X-ray fluorescence, and simultaneous thermogravimetric analysis. For HDTMAB-modified uncalcined Al Keggin cation pillared montmorillonites (H-Al-Mts), the basal spacing increased with the increment of surfactant loading level, but the Al content of H-Al-Mts decreased simultaneously, indicating that the intercalated surfactant replaced some Al Keggin cations in the interlayer space. However, in the case of C-Al-Mts, the interlayer spaces could not be further expanded after surfactant modification, implying that the neighboring montmorillonite layers were “locked” by the aluminum pillars which were formed by dehydroxylation of Al Keggin cation pillars during thermal treatment. The thermal stability of HDTMAB-modified C-Al-Mts (H-C-Al-Mts) was much better than that of H-Al-Mts. The major mass loss of H-C-Al-Mts occurred at ca. 410 °C, corresponding to decomposition of intercalated surfactant cations. In contrast, H-Al-Mts displayed two mass loss temperatures at ca. 270 and 410 °C, corresponding to the evaporation of surfactant molecules and the decomposition of surfactant cations in the interlayer space, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Pinnavaia TJ. Intercalated clay catalysts. Science. 1983;220:365–71.

    Article  CAS  Google Scholar 

  2. Lahav N, Shani U, Shabtai J. Cross-linked smectites. 1. Synthesis and properties of hydroxy-aluminum-montmorillonite. Clays Clay Miner. 1978;26:107–15.

    Article  CAS  Google Scholar 

  3. Lagaly G. Characterization of clays by organic-compounds. Clay Miner. 1981;16:1–21.

    Article  CAS  Google Scholar 

  4. He HP, Ma YH, Zhu JX, Yuan P, Qing YH. Organoclays prepared from montmorillonites with different cation exchange capacity and surfactant configuration. Appl Clay Sci. 2010;48:67–72.

    Article  CAS  Google Scholar 

  5. Kloprogge JT. Synthesis of smectites and porous pillared clay catalysts: a review. J Porous Mater. 1998;5:5–41.

    Article  CAS  Google Scholar 

  6. Occelli ML, Bertrand JA, Gould SAC, Dominguez JM. Physicochemical characterization of a Texas montmorillonite pillared with polyoxocations of aluminum. Part I: the microporous structure. Microporous Mesoporous Mater. 2000;34:195–206.

    Article  CAS  Google Scholar 

  7. Ding Z, Kloprogge JT, Frost RL, Lu GQ, Zhu HY. Porous clays and pillared clays-based catalysts. Part 2: a review of the catalytic and molecular sieve applications. J Porous Mater. 2001;8:273–93.

    Article  CAS  Google Scholar 

  8. Yuan P, He HP, Bergaya F, Wu DQ, Zhou Q, Zhu JX. Synthesis and characterization of delaminated iron-pillared clay with meso-microporous structure. Microporous Mesoporous Mater. 2006;88:8–15.

    Article  CAS  Google Scholar 

  9. Qin ZH, Yuan P, Zhu JX, He HP, Liu D, Yang SQ. Influences of thermal pretreatment temperature and solvent on the organosilane modification of Al13-intercalated/Al-pillared montmorillonite. Appl Clay Sci. 2010;50:546–53.

    Article  CAS  Google Scholar 

  10. Kasama T, Watanabe Y, Yamada H, Murakami T. Sorption of phosphates on Al-pillared smectites and mica at acidic to neutral pH. Appl Clay Sci. 2004;25:167–77.

    Article  CAS  Google Scholar 

  11. Zhu RL, Zhu LZ, Zhu JX, Ge F, Wang T. Sorption of naphthalene and phosphate to the CTMAB-Al13 intercalated bentonites. J Hazard Mater. 2009;168:1590–4.

    Article  CAS  Google Scholar 

  12. Lenoble V, Bouras O, Deluchat V, Serpaud B, Bollinger JC. Arsenic adsorption onto pillared clays and iron oxides. J Colloid Interface Sci. 2002;255:52–8.

    Article  CAS  Google Scholar 

  13. Bhattacharyya KG, Gupta SS. Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: a review. Adv Colloid Interface Sci. 2008;140:114–31.

    Article  CAS  Google Scholar 

  14. Karamanis D, Assimakopoulos PA. Efficiency of aluminum-pillared montmorillonite on the removal of cesium and copper from aqueous solutions. Water Res. 2007;41:1897–906.

    Article  CAS  Google Scholar 

  15. Gyftopoulou ME, Millan M, Bridgwater AV, Dugwell D, Kandiyoti R, Hriljac JA. Pillared clays as catalysts for hydrocracking of heavy liquid fuels. Appl Catal A Gen. 2005;282:205–14.

    Article  CAS  Google Scholar 

  16. Martinez-Ortiz MJ, Fetter G, Dominguez JM, Melo-Banda JA, Ramos-Gomez R. Catalytic hydrotreating of heavy vacuum gas oil on Al- and Ti-pillared clays prepared by conventional and microwave irradiation methods. Microporous Mesoporous Mater. 2003;58:73–80.

    Article  CAS  Google Scholar 

  17. Zhou Q, Frost RL, He HP, Xi YF, Zbik M. TEM, XRD, and thermal stability of adsorbed paranitrophenol on DDOAB organoclay. J Colloid Interface Sci. 2007;311:24–37.

    Article  CAS  Google Scholar 

  18. Zhu LZ, Chen BL. Sorption behavior of p-nitrophenol on the interface between anion-cation organobentonite and water. Environ Sci Technol. 2000;34:2997–3002.

    Article  CAS  Google Scholar 

  19. Yilmaz N, Yapar S. Adsorption properties of tetradecyl- and hexadecyl trimethylammonium bentonites. Appl Clay Sci. 2004;27:223–8.

    Article  CAS  Google Scholar 

  20. Park Y, Frost RL, Ayoko GA, Morgan DL. Adsorption of p-nitrophenol on organoclays. J Therm Anal Calorim. 2013;111:41–7.

    Article  CAS  Google Scholar 

  21. Okamoto K, Ray SS, Okamoto M. New poly(butylene succinate)/layered silicate nanocomposites. II. Effect of organically modified layered silicates on structure, properties, melt rheology, and biodegradability. J Polym Sci B Polym Phys. 2003;41:3160–72.

    Article  CAS  Google Scholar 

  22. Okada A, Usuki A. Twenty years of polymer-clay nanocomposites. Macromol Mater Eng. 2006;291:1449–76.

    Article  CAS  Google Scholar 

  23. Gao Z, Xie W, Hwu JM, Wells L, Pan WP. The characterization of organic modified montmorillonite and its filled PMMA nanocomposite. J Therm Anal Calorim. 2001;64:467–75.

    Article  CAS  Google Scholar 

  24. Zhu RL, Wang T, Ge F, Chen WX, You ZM. Intercalation of both CTMAB and Al13 into montmorillonite. J Colloid Interface Sci. 2009;335:77–83.

    Article  CAS  Google Scholar 

  25. Ouellet-Plamondon C, Lynch RJ, Al-Tabbaa A. Comparison between granular pillared, organo- and inorgano–organo-bentonites for hydrocarbon and metal ion adsorption. Appl Clay Sci. 2012;67–68:91–8.

    Article  Google Scholar 

  26. Zhu LZ, Zhu RL. Simultaneous sorption of organic compounds and phosphate to inorganic–organic bentonites from water. Sep Purif Technol. 2007;54:71–6.

    Article  CAS  Google Scholar 

  27. Li SZ, Wu PX. Characterization of sodium dodecyl sulfate modified iron pillared montmorillonite and its application for the removal of aqueous Cu(II) and Co(II). J Hazard Mater. 2010;173:62–70.

    Article  CAS  Google Scholar 

  28. Zhu LZ, Tian SL, Zhu JX, Shi Y. Silylated pillared clay (SPILC): a novel bentonite-based inorgano–organo composite sorbent synthesized by integration of pillaring and silylation. J Colloid Interface Sci. 2007;315:191–9.

    Article  CAS  Google Scholar 

  29. An TC, Chen JX, Li GY, Ding XJ, Sheng GY, Fu JM, et al. Characterization and the photocatalytic activity of TiO2 immobilized hydrophobic montmorillonite photocatalysts degradation of decabromodiphenyl ether (BDE 209). Catal Today. 2008;139:69–76.

    Article  CAS  Google Scholar 

  30. Occelli ML, Auroux A, Ray GJ. Physicochemical characterization of a Texas montmorillonite pillared with polyoxocations of aluminum. II. NMR and microcalorimetry results. Microporous Mesoporous Mater. 2000;39:43–56.

    Article  CAS  Google Scholar 

  31. Thomas SM, Occelli ML. Effects of synthesis conditions on the thermal stability of a Texas montmorillonite expanded with [Al13O4(OH)24(H2O)12]7+ cations. Clays Clay Miner. 2000;48:304–8.

    Article  CAS  Google Scholar 

  32. Khalaf H, Bouras O, Perrichon V. Synthesis and characterization of Al-pillared and cationic surfactant modified Al-pillared Algerian bentonite. Microporous Mater. 1997;8:141–50.

    Article  CAS  Google Scholar 

  33. Zhu LZ, Zhu RL, Xu LH, Ruan XX. Influence of clay charge densities and surfactant loading amount on the microstructure of CTMA-montmorillonite hybrids. Colloids Surf A. 2007;304:41–8.

    Article  CAS  Google Scholar 

  34. Kloprogge JT, Geus JW, Jansen JBH, Seykens D. Thermal-stability of basic aluminum sulfate. Thermochim Acta. 1992;209:265–76.

    Article  CAS  Google Scholar 

  35. Pusch R, Yong RN. Microstructure of smectite clays and engineering performance. 1st ed. London: Taylor & Francis; 2006.

    Google Scholar 

  36. Bergaya F, Aouad A, Mandalia T. Pillared clays and clay minerals. In: Bergaya F, Theng BKG, Lagaly G, editors. Handbook of clay science. Amsterdam: Elsevier Science; 2006. p. 393–421.

    Chapter  Google Scholar 

  37. Acemana S, Lahav N, Yariv S. A thermo-FTIR-spectroscopy analysis of Al-pillared smectites differing in source of charge, in KBr disks. Thermochim Acta. 1999;340–341:349–66.

    Article  Google Scholar 

  38. Zhu JX, Shen W, Ma YH, Ma LY, Zhou Q, Yuan P, et al. The influence of alkyl chain length on surfactant distribution within organo-montmorillonites and their thermal stability. J Therm Anal Calorim. 2012;109:301–9.

    Article  CAS  Google Scholar 

  39. He HP, Ding Z, Zhu JX, Yuan P, Xi YF, Yang D, et al. Thermal characterization of surfactant-modified montmorillonites. Clays Clay Miner. 2005;53:287–93.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support from the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KZCX2-EW-QN101), the “Strategic Priority Research Program” of the Chinese Academy of Sciences (Grant No. XDB05050200), and the National Natural Science Foundation of China (Grant No. U0933003, 41272060). This is contribution No. IS-1657 from GIGCAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongping He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, L., Zhou, Q., Li, T. et al. Investigation of structure and thermal stability of surfactant-modified Al-pillared montmorillonite. J Therm Anal Calorim 115, 219–225 (2014). https://doi.org/10.1007/s10973-013-3190-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-3190-4

Keywords

Navigation