Skip to main content
Log in

Lanthanoid metal nitrates with hydrogen bonded hexamethylenetetramine

Preparation, characterization and kinetics of thermolysis

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Cerium, praseodymium, and neodymium nitrate complexes with hydrogen bonded hexamethylenetetramine (HMTA) of the formula [Ce(NO3)2(H2O)5](HMTA)2(NO3)(H2O)3, [Pr(NO3)2(H2O)6]2[Pr(H2O)9](HMTA)6(NO3)6(H2O)4 and [Nd(NO3)2(H2O)5](HMTA)2(NO3)(H2O)3 have been prepared and characterized by X-ray crystallography. All the complexes belong to monoclinic crystal system. Ce and Nd complexes have P21/n space group, whereas Pr complex has C2/c. Thermal analyses of these complexes were carried out using TG, DSC, which showed their multi-step decomposition. Kinetics of thermolysis has been done by applying model fitting as well as model free isoconversional method. In order to see the response of rapid heating, ignition delay measurements were carried out. The thermal decomposition pathways have also been demonstrated. On the basis of thermal studies the thermal stability of the complexes was found in the order; Pr > Ce > Nd. In order to identify the end products of thermolyses, X-ray diffraction patterns of end product were carried out which showed the formation of corresponding metal oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Carmona D, Lamata MP, Oro LA. Recent advances in homogeneous enantioselective Diels–Alder reactions catalysed by chiral transition–metal complexes. Coord Chem Rev. 2000;200–202:717–72.

    Article  Google Scholar 

  2. Epstein DM, Chapell LL, Khalili H, Supkowski RM, Horrocks WD, Morrow JR Jr. Eu(III) macrocyclic complexes promote cleavage of and bind to models for the 5′-cap of mRNA. Effect of pendent group and a second metal ion. Inorg Chem. 2000;39(10):2130–4.

    Article  CAS  Google Scholar 

  3. Feng J, Sun G, Pei F, Liu M. Comparison between GdDTPA and two gadolinium polyoxometalates as potential MRI contrast agents. J Inorg Biochem. 2002;92:193–9.

    Article  CAS  Google Scholar 

  4. Sessler JL, Miller RA. New drugs with diverse clinical applications in radiation and photodynamic therapy. Biochem Pharmacol. 2000;59:733–9.

    Article  CAS  Google Scholar 

  5. Ulusoy U, Whitley JE. Determination of intestinal uptake of iron and zinc using stable isotopic tracers and rare earth markers. Nutr Res. 1999;19(5):675–88.

    Article  CAS  Google Scholar 

  6. Agwara MO, Ndifon PT, Ndikontar MK. Physicochemical studies of some hexamethylenetetramine metal(II) complexes. Bull Chem Soc Ethiopia. 2004;18:143–8.

    CAS  Google Scholar 

  7. Xuan YW, Wu W, Li SJ. Synthesis and crystallographic characterization of a six coordinate Cu(II) complex based on hexamethylenetetramine ligand. Cryst Res Technol. 2009;44:127–30.

    Article  CAS  Google Scholar 

  8. Li F, Ma J, Song S, Yang J, Liu Y, Su Z. Influence of neutral ligands on the structures of silver(I) sulfonates. Inorg Chem. 2005;44:9374–83.

    Article  CAS  Google Scholar 

  9. Zheng Y, Ying E. Malonato-bridged hexamethylenetetramine coordination polymers containing Mn(II) and Cu(II). J Coord Chem. 2005;58(5):453–60.

    Article  CAS  Google Scholar 

  10. Lim MJ, Murray CA, Tronic TA, deKrafft KE, Ley AN, deButts JC, Pike RD, Lu H, Patterson HH. Copper(I) cyanide networks: synthesis, structure, and luminescence behaviour. Part 2. Piperazine ligands and hexamethylenetetramine. Inorg Chem. 2007;47:6931–47.

    Article  Google Scholar 

  11. Larionov SV, Kokina TE, Glinskaya LA, Klevtsova RF. Nickel(II) diisobutyldithiophosphinate complexes with hexamethylenetetramine and triethylenediamine: synthesis and properties. Crystal and molecular structure of [Ni2(C6H12N4){(i-C4H9)2PS2}4]. Russ J Coord Chem. 2002;28(8):560–4.

    Article  CAS  Google Scholar 

  12. Zhang Y, Li J, Nishiura M, Imamoto T. Structural, spectral and thermal properties of a new anion zinc(II) hexamethylenetetramine complex. J Mol Struct. 2002;523:257–60.

    Article  Google Scholar 

  13. Liittringhauusn A, Kullick W. Gemiscrhte carbonyl komplexe des Cr0 und des Mo0 mit organo-stickstoffverbindungen. Tetrahedron Lett. 1959;10:13–5.

    Article  Google Scholar 

  14. Zheng S, Tong M, Chen X. Silver (I)–hexamethylenetetramine molecular architectures: from self-assembly to designed assembly. Coord Chem Rev. 2003;246:185–202.

    Article  CAS  Google Scholar 

  15. Xue H, Gao H, Twamley B, Shreeve JM. Energetic nitrate, perchlorate, azide and azolate salts of hexamethylenetetramine. Eur J Inorg Chem. 2006;15:2959–65.

    Article  Google Scholar 

  16. Cheng C, Gong S, Fu Q, Shen L, Liu Z, Qiao Y, Fu C. Hexamethylenetetramine as both a ligand and a reducing agent in AGET atom transfer radical batch emulsion polymerization. Polym Bull. 2011;66:735–46.

    Article  CAS  Google Scholar 

  17. Sieranski T, Kruszynski R. Magnesium sulphate complexes with hexamethylenetetramine and 1,10-phenanthroline—thermal, structural and spectroscopic properties. J Therm Anal Calorim. 2012;109:141–52.

    Article  CAS  Google Scholar 

  18. Konar S, Mukherjee PS, Drew MGB, Ribas J, Chaudhari NR. Synthesis of two new 1D and 3D networks of Cu(II) and Co(II) using malonate and urotropine as bridging ligands: crystal structures and magnetic studies. Inorg Chem. 2003;42:2545–52.

    Article  CAS  Google Scholar 

  19. Dalvi AA, Satpati AK, Palrecha MM. Simultaneous determination of Pt and Rh by catalytic adsorptive stripping voltammetry, using hexamethylenetetramine (HMTA) as complexing agent. Talanta. 2008;75:1382–7.

    Article  CAS  Google Scholar 

  20. Fedoroff BT, Sheffield OE. Encyclopedia of explosives and related items, vol. 5. Dover: Picatinny Arsenal; 1966. p. E95.

    Google Scholar 

  21. Koper JH, Jansen OG, van den Berg PJ. Delft Technische Hogeschool. Netherlands: Explosivstoffe; 1970. p. 181–3.

    Google Scholar 

  22. Singh G, Kapoor IPS, Pandey DK. Hexammine metal perchlorates as energetic burning rate modifiers. J Energ Mater. 2002;20:223–44.

    Article  CAS  Google Scholar 

  23. Singh G, Pandey DK. Studies on energetic compounds, part 27: kinetics and mechanism of thermolysis of bis(ethylenediamine) metal nitrates and their role in the burning rate of solid propellants. Propellants Explos Pyrotech. 2003;28(5):231–9.

    Article  CAS  Google Scholar 

  24. Singh G, Barnawal BP, Kapoor IPS, Kumar D, Singh CP, Frohlich R. Preparation, X-ray crystallography and thermal decomposition of some transition metal nitrate complexes with hexamethylenetetramine. J Therm Anal Calorim. 2008;91(3):971–7.

    Article  CAS  Google Scholar 

  25. Singh G, Barnawal BP, Kapoor IPS, Kumar D, Frohlich R. Preparation, X-ray crystallography and thermal decomposition of some transition metal perchlorate complexes with hexamethylenetetramine. J Phys Chem A. 2007;111:12972–6.

    Article  CAS  Google Scholar 

  26. Singh G, Shrimal AK, Kapoor IPS, Singh CP, Kumar D, Mannan SM. Kinetics of thermolysis of some transition metal perchlorate complexes with 1,6-diaminohexane ligand. J Therm Anal Calorim. 2011;103:149–55.

    Article  CAS  Google Scholar 

  27. Singh G, Singh CP, Fröhlich R. Preparation, characterization and thermolysis of metal nitrate complexes with 4,4′-bipyridine. J Therm Anal Calorim. 2006;85:425–31.

    Article  CAS  Google Scholar 

  28. Kumar D, Kapoor IPS, Singh G, Goel N, Singh UP. Preparation, X-ray crystallography and thermolysis of transition metal nitrates of 2,2′-bipyridine. J Therm Anal Calorim. 2012;107:325–34.

    Article  CAS  Google Scholar 

  29. Kumar D, Kapoor IPS, Frohlich R, Singh G. Preparation, characterization, and kinetics of thermolysis of nickel and copper nitrate complexes with 2,2′-bipyridine ligand. Thermochim Acta. 2012;545:67–74.

    Article  CAS  Google Scholar 

  30. Trzesowsk-Kruszynska A, Kruszynski R, Zalewicz M, Bartczak TJ. Coordination sphere geometry changes of lanthanoid(III)nitrate complexes with hexamethylenetetramine. J Coord Chem. 2010;63(6):1013–28.

    Article  Google Scholar 

  31. Sheldrick GM. SADABS, Program for scaling and correction of area detector data. Göttingen: University of Göttingen; 1996.

    Google Scholar 

  32. Sheldrick GM. Phase annealing in SHELX-90: direct method for larger structures. Acta Crystallogr A. 1990;46:467–73.

    Article  Google Scholar 

  33. Sheldrick GM. SHELXTL-NT, version 6.12. Reference manual. Göttingen: University of Göttingen; 2000.

  34. Klaus B. DIAMOND, version 1.2c. Bonn: University of Bonn; 1999.

  35. Allen FH. The Cambridge structural database: a quarter of a million crystal structures and rising. Acta Crystallogr B. 2002;58:380–8.

    Article  Google Scholar 

  36. Singh G, Singh RR. Indigenously fabricated apparatus for thermogravimetric analysis. Res Ind. 1978;23:92–3.

    CAS  Google Scholar 

  37. Brown ME, Dollimore D, Galway AK. Reactions in the solid state, comprehensive chemical kinetics, vol. 22. Amsterdam: Elsevier; 1977. p. 1–340.

    Google Scholar 

  38. Vyazovkin S, Wight CA. Isothermal and nonisothermal reaction kinetics in solids: in search of ways toward consensus. J Phys Chem A. 1997;10:8279–84.

    Article  Google Scholar 

  39. Singh G, Kapoor IPS, Vasudeva SK. Thermolysis of AP-PS-additive mixtures. Indian J Technol. 1991;29:584–9.

    Google Scholar 

  40. Freeman ES, Gorden S. The application of the absolute rate theory of the ignition of propagatively reacting systems: thermal ignition of the system, lithium nitrate–magnesium, sodium nitrate–magnesium. J Phys Chem. 1956;60:867–71.

    Article  CAS  Google Scholar 

  41. Zinn J, Rogers RN. Thermal initiation of explosives. J Phys Chem. 1962;66:2646–53.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thanks are due to Head, Chemistry Department, DDU Gorakhpur University, Gorakhpur for lab facilities. The financial assistance UGC for Emeritus Fellow to Dr. Gurdip Singh and CSIR for SRF to Dinesh Kumar is also acknowledged. Authors are also thankful to Institute Instrumentation Centre, IITR, Roorkee for TG-DSC and Chairman, Department of Materials Engineering, IISc, Bangalore for providing XRD facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gurdip Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, D., Kapoor, I.P.S., Singh, G. et al. Lanthanoid metal nitrates with hydrogen bonded hexamethylenetetramine. J Therm Anal Calorim 114, 5–18 (2013). https://doi.org/10.1007/s10973-012-2826-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2826-0

Keywords

Navigation