Skip to main content
Log in

Kinetics of the crosslinking reaction of nonionic polyol dispersion from terpene-maleic ester-type epoxy resin

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The bulk crosslinking reaction kinetics of a novel two-component waterborne polyurethanes (2K-WPUs) composed of a bio-resin-based polyol dispersion and a hydrophilically modified hexamethylene diisocyanate tripolymer are investigated by freeze–drying and differential scanning calorimetry (DSC) technique at different heating rates. The data fit for the above two components is implemented with the nth-order kinetics equation and Málek’s mechanism function method, respectively. The kinetic parameters of crosslinking reaction are determined by the kinetic analysis of the data obtained from the thermal treatment, and then the kinetic model is built. The results indicate that the nth-order model deduced from Kissinger and Crane equation has great distinction with the experimental data, while the Málek analytic mechanism shows that the crosslinking process of the crosslinking reaction follows an autocatalytic reaction. The two-parameter (m and n) autocatalytic model (S–B model) can well describe the crosslinking reaction process of the studied 2K-WPU. The DSC curves derived from the experimental data show a good agreement with the theoretical calculation under 5–20 °C min−1 heating rate. The results provide theoretical basis for the choice of the manufacturing process and the optimization of processing window.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Melchiors M, Sonntag M, Kobusch C, Jurgents E. Recent developments in aqueous two-component polyurethane (2K-PUR) coatings. Prog Org Coat. 2000;40:99–109.

    Article  CAS  Google Scholar 

  2. Otts DB, Urban MW. Heterogeneous crosslinking of waterborne two-component polyurethanes; stratification processes and the role of water. Polymer. 2005;46:2699–709.

    Article  CAS  Google Scholar 

  3. Otts DB, Pereira KJ, Arret WL, Urban MW. Dynamic colloidal processes in waterborne two-component polyurethanes and their effect on solution and film morphology. Polymer. 2005;46:4776–88.

    Article  CAS  Google Scholar 

  4. Zhou X-H, Tu W-P, Hu J-Q. Preparation and characterization of two-component waterborne polyurethane comprised of water-soluble acrylic resin and HDI biuret. Chinese J Chem Eng. 2006;14:99–104.

    Article  CAS  Google Scholar 

  5. Zhu W-Z, Liu X-Y. Study on curing kinetics of cast polyurethane elastomers by durometer. Polyurethane Ind. 1996;3:27–31.

    Google Scholar 

  6. Baker JW, Gaunt J. The mechanism of the reaction of aryl isocyanates with alcohols and amines. J Chem Soc. 1949;9–31.

  7. Ren N–N, Yu X-H, Yu Y. Influences of catalysts on the film formation and performance of 2-K waterborne polyurethane. Paint Coat Ind. 2010;40:27–31.

    Google Scholar 

  8. Karger-Kocsis J. Thermoset polymers containing bio-based renewable resources. Exp Polym Lett. 2009;3:676.

    Article  Google Scholar 

  9. Song Z-Q. Researches on pine chemicals in China. Chem Ind For Prod. 2004;24:7–11.

    CAS  Google Scholar 

  10. Wu G-M, Kong Z-W, Chu F-X. Synthesis of epoxy resin from hydrogenated terpinene- maleic anhydride. Chem Ind For Prod. 2007;27:57–62.

    Google Scholar 

  11. Wu G-M, Kong Z-W, Chu F-X. Study on curing reaction and mechanical properties of epoxy resin from hydrogenated terpinene-maleic anhydride. Chem Ind For Prod. 2007;27:21–6.

    CAS  Google Scholar 

  12. Wu G-M, Kong Z-W, Chen J, Jiang J-C. Preparation and properties of nonionic polyol dispersion from terpinene-maleic ester type epoxy resin. J App Polym Sci. 2011;120:579–85.

    Article  CAS  Google Scholar 

  13. Wu G-M, Kong Z-W, Huang H, Chen J, Chu F-X. Synthesis, characterization and properties of polyols from hydrogenated terpinene-maleic ester type epoxy resin. J App Polym Sci. 2009;113:2894–901.

    Article  CAS  Google Scholar 

  14. Mahendran AR, Wuzella G, Kandelbauer A, Aust N. Thermal cure kinetics of epoxidized linseed oil with anhydridehardener. J Therm Anal Calorim. 2011. doi:10.1007/s10973-011-1585-7.

  15. Sheng X, Akinc M, Kessler MR. Cure kinetics of thermosetting bisphenol E cyanate ester. J Therm Anal Calorim. 2008;93:77–85.

    Article  CAS  Google Scholar 

  16. Garcia SJ, Serra A, Ramis X. Influence of the addition of erbium and ytterbium triflates in the curing kinetics of a DGEBA/o-tolybiguanide powder mixture. J Therm Anal Calorim. 2007;89:223–31.

    Article  CAS  Google Scholar 

  17. Sabzevari SM, Alavi-Soltani S, Minaie B. Effect of thermoplastic toughening agent on glass transition temperature and cure kinetics of an epoxy prepreg. J Therm Anal Calorim. 2011;106:905–11.

    Article  CAS  Google Scholar 

  18. Yousefi A, Lafleur PG, Gauvin R. Kinetic studies of thermoset cure reactions: A review. Poly Compos. 1997;18:157–68.

    Article  CAS  Google Scholar 

  19. Koreeda T, Matos J, Goncalves CS. Cure kinetics of epoxy composite applied on stator bars insulation. J Therm Anal Calorim. 2011;106:631–5.

    Article  CAS  Google Scholar 

  20. Wan J-T, Fan H, Li B-G. Synthesis and nonisothermal reaction of a novelacrylonitrile-capped poly(propyleneimine) dendrimerwith epoxy resin. J Therm Anal Calorim. 2011;103:685–92.

    Article  CAS  Google Scholar 

  21. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  22. Fu X-C, Shen W-X, Yao T-Y, Hou W-H. Physical chemistry Beijing. China: China Higher Education Press; 2006. p. 238.

    Google Scholar 

  23. Málek J. The kinetic analysis of non-isothermal data. Thermochim Acta. 1992;200:257–69.

    Article  Google Scholar 

  24. Montserrat S, Málek J. A kinetic analysis of the curing reaction of an epoxy resin. Thermochim Acta. 1993;228:47–60.

    Article  CAS  Google Scholar 

  25. Senum GI, Yang RT. Rational approximations of the integral of the Arrhenius function. J Therm Anal Calorim. 1977;11:445–7.

    Article  Google Scholar 

  26. Vyazovkin S, Sbirrazzuoli N. Isoconversional kinetic analysis of thermally stimulated processes in polymers. Macromol Rapid Comm. 2006;27:1515–32.

    Article  CAS  Google Scholar 

  27. Zhu L-M. Polyurethane synthetic material. Nanjing: Phoenix Science Press; 2002. p. 15.

    Google Scholar 

  28. Sestak J, Berggren G. Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures. Thermochim Acta. 1971;3:1–12.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the Chinese National Natural Science Foundation (contract Grant number: 30972320, 31100428).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guo Min Wu or Zhen Wu Kong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, G.M., Kong, Z.W., Chen, C.F. et al. Kinetics of the crosslinking reaction of nonionic polyol dispersion from terpene-maleic ester-type epoxy resin. J Therm Anal Calorim 111, 735–741 (2013). https://doi.org/10.1007/s10973-012-2259-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2259-9

Keywords

Navigation