Skip to main content
Log in

Molar heat capacity and thermodynamic properties of Lu(C5H9NO4)(C3H4N2)6(ClO4)3·5HClO4·10H2O

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A complex of Lutetium perchloric acid coordinated with l-glutaminic acid (C5H9NO4) and imidazole (C3H4N2), Lu(C5H9NO4)(C3H4N2)6(ClO4)3·5HClO4·10H2O was synthesized and characterized. Thermodynamic properties of the complex were studied with an adiabatic calorimeter (AC) from 80 to 390 K and differential scanning calorimetry (DSC) from 100 to 300 K. Two thermal abnormalities were discovered at 220.34 and 248.47 K, which were deduced to be phase transitions. One was interpreted as a freezing-in phenomenon of the reorientational motion of ClO4 ions and the other was attributed to the orientational order/disorder process of ClO4 ions. The low-temperature molar heat capacities were measured by AC and the thermodynamic functions [H T  − H 298.15] and [S T  − S 298.15] were derived in the temperature range from 80 to 390 K with temperature interval of 5 K. Thermal decomposition behavior of the complex was studied by thermogravimetric analysis and DSC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Anghileri LJ. On the antitumor activity of gallium and lanthanides. Arzneim Forsch. 1975;25:793–5.

    CAS  Google Scholar 

  2. McCarthy GJ. Rare earths in modern science and technology. New York: Plenum Press; 1980. p. 25–105.

    Book  Google Scholar 

  3. Sudhindra NM, Joshi GK, Bhutra MP. Syntheses and absorption spectral studies of praseodymium (III) and neodymium (III) complexes with amino acids. Indian J Chem. 1982;21A:275–8.

    Google Scholar 

  4. Xu H, Chen L. Study on the complex site of l-tyrosine with rare-earth element Eu3+. Spectrochim Acta Part A. 2003;59:657–62.

    Article  Google Scholar 

  5. Zhang H, Feng J, Zhu W-f. Rare-earth element distribution characteristics of biological chains in rare-earth element-high background regions and their implications. Biol Trace Elem Res. 2000;73:19–27.

    Article  CAS  Google Scholar 

  6. Glowiak T, Legendziewicz J, Huskowska E, Gawryszewska P. Ligand chirality effect on the structure and its spectroscopic consequences in [Ln2(Ala)4(H2O)8](ClO4)6. Polyhedron. 1996;15:2939–47.

    Article  CAS  Google Scholar 

  7. Liu B-P, Lv X-C, Tan Z-C, Zhang Z-H, Shi Q, Yang L-N, Xing J, Sun L-X, Zhang T. Molar heat capacity and thermodynamic properties of crystalline Ho(Asp)Cl2·6H2O. J Therm Anal Calorim. 2007;89:283–7.

    Article  CAS  Google Scholar 

  8. Liu B-P, Tan Z-C, Xu F, Yu P, Xing J. Low-temperature heat capacity and thermodynamic properties of crystalline [RE (Gly)3(H2O)2]Cl3·2H2O (RE = Pr, Nd, Gly = Glycine). Thermochim Acta. 2003;397:67–73.

    Article  CAS  Google Scholar 

  9. Lv X-C, Liu B-P, Tan Z-C, Zhang Z-H, Shi Q. Sun X-l, molar heat capacity and thermodynamic properties of [Er(Pro)2(H2O)5Cl2] crystalline. J Chem Eng Data. 2006;51:1526–9.

    Article  CAS  Google Scholar 

  10. Lv X-C, Tan Z-C, Gao X-H. Thermodynamic properties and molar heat capacity of Er2(Asp)2(Im)8(ClO4)6·10H2O. J Therm Anal Calorim. 2011;103:1119–24.

    Article  CAS  Google Scholar 

  11. Lv X-C, Tan Z-C, Gao X-H. Molar heat capacities, thermodynamic properties, and thermal stability of Lu(C2H5O2N)2Cl3·3H2O. J Chem Eng Data. 2011;56:1383–7.

    Article  CAS  Google Scholar 

  12. Nakamoto K. Infrared spectra of inorganic and coordination compounds. 4th ed. New York: Wiley; 1986. p. 258.

    Google Scholar 

  13. Wayda AL, Kaplan ML. Mixed ligand imidazole complexes of organo-lanthanides. Polyhedron. 1990;9:751–6.

    Article  CAS  Google Scholar 

  14. Tan Z-C, Liu B-P, Yan J-b, Sun L-X. A fully automated adiabatic calorimeter workable between 80 and 400 K. Comput Appl Chem. 2003;20:264–268 (in Chinese).

    Google Scholar 

  15. Zeng J-l, Yu S-b, Tong B, Sun L-X, Tan Z-C. Heat capacities and thermodynamic properties of (S)-tert-butyl 1-phenylethylcarbamate. J Therm Anal Calorim. 2011;103(3):1087–93.

    Article  CAS  Google Scholar 

  16. Wu J, Chen S-P, Gao S-l. Low-temperature thermodynamics of Ln(Me2dtc)3(C12H8N2) (Me2dtc = dimethyldithiocarbamate, Ln = La, Pr, Nd, Sm). J Therm Anal Calorim. 2010;100:1091–8.

    Article  CAS  Google Scholar 

  17. Lv X-C, Gao X-H, Tan Z-C. Molar heat capacity and thermodynamic properties of 1,2-cyclohexane dicarboxylic anhydride [C8H10O3]. J Therm Anal Calorim. 2008;92:523–7.

    Article  CAS  Google Scholar 

  18. Zhao Z-M, Sun L-X, Tan Z-C. Heat capacities and thermodynamic properties of N-(tert-butoxycarbonyl)-l-phenylalanine (C14H19NO4). J Therm Anal Calorim. 2011;3 (online first).

  19. Donald GA. Thermodynamic properties of synthetic sapphire standard reference material 720 and the effect of temperature- scale difference on thermodynamic properties. J Phys Chem Ref Data. 1993;22:1441–52.

    Article  Google Scholar 

  20. Yukawa Y, Igarashi S, Masuda Y, Oguni M. Phase transition and glass transition concerning configurational order/disorder of ions in crystalline (TMA)2[Sr{Ni(pro)2–6](ClO4)4 and (TMA)[Sm{Ni(pro)2–6](ClO4)4. J Mol Struct. 2002;605:277–90.

    Article  CAS  Google Scholar 

  21. Anna, MM, Edward M, Hetmańczyk Ł, Natkaniec I, Ściesińska E, Ściesiński J, Wróbel S. Phase transition, molecular motions, structural changes and low- frequency vibrations in [Cu(NH3)5](ClO4)2. Chem Phys. 2005;317:188–197.

    Google Scholar 

  22. Hangam SS, Westrumj ER. Heat capacities and thermodynamic properties of globular molecules. I. adamantane and hexamethylenetetramine. Thermodynamic properties of globular. Molecules. 1960;64:1547–51.

    Google Scholar 

  23. Udowenko AA, Laptash NM, Maslennikova IG. Orientation disorder in ammonium elpasolites crystal structures of (NH4)3AlF6,(NH4)3TiOF5 and (NH4)3FeF6. J Fluor Chem. 2003;124:5–15.

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Nature Science Foundation of China under the Grant NSFC NO. 21103078, 21003069, 21073189.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z.-C. Tan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lv, XC., Tan, ZC., Gao, XH. et al. Molar heat capacity and thermodynamic properties of Lu(C5H9NO4)(C3H4N2)6(ClO4)3·5HClO4·10H2O. J Therm Anal Calorim 111, 971–976 (2013). https://doi.org/10.1007/s10973-012-2204-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2204-y

Keywords

Navigation