Skip to main content
Log in

An isothermal heat flow calorimeter for large-volume applications

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Design, construction, calibration, and testing of a new isothermal heat flow calorimeter suitable for investigation of large-volume specimens are presented. The measuring vessel has the volume of 1370 cm3, and the calorimeter allows for the measurement at surrounding air temperatures of 5–60 °C. A practical application of the device is demonstrated at the determination of specific hydration heat of cement paste and concrete with silica-aggregate size of up to 16 mm, having the same water/cement ratio. The differences over the whole measuring time period of about 100 h are lower than 2% which indicates a good potential of the calorimeter for the measurement of total hydration heat of composite materials. A reference measurement of hydration heat of cement paste using common isothermal heat flow calorimeter with the measuring vessel of 1 cm3 shows an agreement within ±7%, which seems acceptable, taking into account the heat transport processes in the far larger specimens. The designed calorimeter may find use in future also in other applications where larger specimens are required, such as the measurement of adsorption heat, solution heat, various reaction heats, and enthalpy of liquid–solid transition in heterogeneous systems with large representative elementary volumes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Manya JJ, Antal MJ, Kinoshita CK, Masutani SM. Specific heat capacity of pure water at 4.0 MPa between 298.15 and 465.65 K. Ind Eng Chem Res. 2011;50:6470–84.

    Article  CAS  Google Scholar 

  2. Yamaya K, Matsuguchi A, Kagawa N, Koyama S. Isochoric specific heat capacity of trans-1,3,3,3-tetrafluoropropene (HFO-1234ze(E)) and the HFO-1234ze(E) + CO(2) mixture in the liquid phase. J Chem Eng Data. 2011;56:1535–9.

    Article  CAS  Google Scholar 

  3. Dan WY, Di YY, Kong YX, Wang Q, Yang WW, Wang DQ. Crystal structure and solid–solid phase transition of the complex (C(11)H(18)NO)(2)CuCl(4)(s). J Therm Anal Calorim. 2010;102:291–6.

    Article  CAS  Google Scholar 

  4. da Silva MAVR, Amaral LMPF, Ortiz RV. Experimental study on the thermochemistry of 3-nitrobenzophenone, 4-nitrobenzophenone and 3,3′-dinitrobenzophenone. J Chem Thermodyn. 2011;43:546–51.

    Article  Google Scholar 

  5. Wilken N, Kamasamudram K, Currier NW, Li JH, Yezerets A, Olsson L. Heat of adsorption for NH(3), NO(2) and NO on Cu-Beta zeolite using microcalorimeter for NH(3) SCR applications. Catal Today. 2010;151:237–43.

    Article  CAS  Google Scholar 

  6. Barriocanal L, Taylor KMG, Buckton G. A study of liposome formation using a solution (isoperibol) calorimeter. Int J Pharm. 2004;287:113–21.

    Article  CAS  Google Scholar 

  7. Posern K, Kaps C. Humidity controlled calorimetric investigation of the hydration of MgSO4 hydrates. J Therm Anal Calorim. 2008;92:905–9.

    Article  CAS  Google Scholar 

  8. Seifert HJ, Funke S. Solution enthalpies of hydrates LnCl3·xH2O (Ln=Ce–Lu). Thermochim Acta. 1998;320:1–7.

    Article  CAS  Google Scholar 

  9. Adrega T, van Herwaarden AW. Chip calorimeter for thermal characterization of bio-chemical solutions. Sens Actuators A. 2011;167:354–8.

    Article  Google Scholar 

  10. Gerstig M, Wadsö L. A method based on isothermal calorimetry to quantify the influence of moisture on the hydration rate of young cement pastes. Cem Concr Res. 2010;40:867–74.

    Article  CAS  Google Scholar 

  11. Brandstetr J, Polcer J, Kratky J, Holesinksy R, Havlica J. Possibilities of the use of isoperibolic calorimetry for assessing the hydration behavior of cementitious systems. Cem Concr Res. 2001;31:941–7.

    Article  CAS  Google Scholar 

  12. Wang J-C, Yan P-Y. Influence of initial casting temperature and dosage of fly ash on hydration heat evolution of concrete under adiabatic condition. J Therm Anal Calorim. 2006;85:755–60.

    Article  CAS  Google Scholar 

  13. Mostafa NY, Brown PW. Heat of hydration of high reactive pozzolans in blended cements: isothermal conduction calorimetry. Thermochim Acta. 2005;435:162–7.

    Article  CAS  Google Scholar 

  14. Rahhal V, Talero R. Early hydration of Portland cement with crystalline mineral additions. Cem Concr Res. 2005;35:1285–91.

    Article  CAS  Google Scholar 

  15. Langan BW, Weng K, Ward MA. Effect of silica fume and fly ash on heat of hydration of Portland cement. Cem Concr Res. 2002;32:1045–51.

    Article  CAS  Google Scholar 

  16. Jezo L, Palou M, Kozankova J, Ifka T. Determination of activation effect of Ca(OH)2 upon the hydration of BFS and related heat by isothermal calorimeter. J Therm Anal Calorim. 2010;101:585–93.

    Article  CAS  Google Scholar 

  17. Roszczynialski W, Nocun-Wczelik W. Studies of cementitious systems with new generation by-products from fluidised bed combustion. J Therm Anal Calorim. 2004;77:151–8.

    Article  CAS  Google Scholar 

  18. Černý R, Maděra J, Poděbradská J, Toman J, Drchalová J, Klečka T, Jurek K, Rovnaníková P. The effect of compressive stress on thermal and hygric properties of Portland cement mortar in wide temperature and moisture ranges. Cem Concr Res. 2000;30:1267–76.

    Article  Google Scholar 

  19. Vejmelková E, Konvalinka P, Černý R. Effect of high temperatures on mechanical and thermal properties of carbon-fiber reinforced cement composite. Cem Wapno Beton. 2008;13(75):66–74.

    Google Scholar 

  20. Zuda L, Rovnaník P, Bayer P, Černý R. Thermal properties of alkali-activated aluminosilicate composite with lightweight aggregates at elevated temperatures. Fire Mater. 2011;35:231–44.

    Article  CAS  Google Scholar 

  21. Tydlitát V, Tesárek P, Černý R. Effects of the type of calorimeter and the use of plasticizers and hydrophobizers on the measured hydration heat development of FGD gypsum. J Therm Anal Calorim. 2008;91:791–6.

    Article  Google Scholar 

  22. Tydlitát V, Medved I, Černý R. Determination of a partial phase composition in calcined gypsum by calorimetric analysis of hydration kinetics. J Therm Anal Calorim. 2011. doi:10.1007/s10973-011-1334-y.

  23. Garcıa-Cuello V, Moreno-Pirajan JC, Giraldo-Gutierrez L, Sapag K, Zgrablich G. Adsorption micro calorimeter. Design and electric calibration. J Therm Anal Calorim. 2009;97:711–5.

    Article  Google Scholar 

  24. Hansen CW, Hansen LD, Nicholson AD, Chilton MC, Thomas N, Clark J, Hansen JC. Correction for instrument time constant and baseline in determination of reaction kinetics. Int J Chem Kinet. 2011;43:53–61.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research has been supported by the Ministry of Education, Youth and Sports of Czech Republic, under contract No MSM: 6840770031.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Černý.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tydlitát, V., Zákoutský, J. & Černý, R. An isothermal heat flow calorimeter for large-volume applications. J Therm Anal Calorim 110, 1021–1027 (2012). https://doi.org/10.1007/s10973-011-1907-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-1907-9

Keywords

Navigation