Skip to main content
Log in

Physical–chemical and catalytic properties of deposited MoO3 and V2O5

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The deposition of molybdenum and vanadium oxides onto fumed silica, titania, and alumina as supports through dry milling has been carried out. The structure of prepared compositions has been investigated by means of XRD, DTA–TG, FTIR, and UV–Vis spectroscopy, nitrogen adsorption. The deposited crystal phases are sufficiently uniformly distributed on support surface. The supported oxides are subjected to dispersion in process of milling to the state of oligomeric or isolated species. Milled bulk and deposited MoO3 (first of all, on alumina) possesses improved catalytic performance in process of epoxidation of 1-octene. Vanadium pentoxide also has higher activity in this process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ted Oyama S, editor. Mechanism in homogeneous and heterogeneous epoxidation catalysis. Amsterdam, Elsevier; 2008.

  2. da Palma Carreiro E, Burke AJ. Catalytic epoxidation of olefins using MoO3 and TBHP: Mechanistic considerations and the effect of amine additives on the reaction. J Mol Catal A. 2006;249:123–8.

    Article  Google Scholar 

  3. Moussa N, Ghorbel A, Grange P. Vanadia-silica catalysts prepared by sol–gel method: application for epoxidation reaction. J Sol-Gel Sci Technol. 2005;33:127–32.

    Article  CAS  Google Scholar 

  4. Centi G, Cavani F, Trifiro F. Selective oxidation by heterogeneous catalysis. New York: Kluwer/Plenum; 2001.

    Google Scholar 

  5. Oyama ST. Crystal face anisotropy of propilene oxidation on molybdenum trioxide. Bull Chem Soc Jpn. 1988;61:2585–94.

    Article  CAS  Google Scholar 

  6. Bielanski A, Najbar M. V2O5–MoO3 catalysts for benzene oxidation. Appl Catal A. 1997;157:223–61.

    Article  CAS  Google Scholar 

  7. Dai H, Bell AT, Iglesia E. Effects of molybdena on the catalytic properties of vanadia domains supported on alumina for oxidative dehydrogenation of propane. J Catal. 2004;221:491–9.

    Article  CAS  Google Scholar 

  8. Zazhigalov VA, Haber J, Stoch J, Kharlamov AI, Bogutskaya LV, Bacherikova IV, Kowal A. Influence of the mechanochemical treatment on the reactivity of V-containing oxide systems. Solid State Ionics. 1997;101–103:1257–62.

    Article  Google Scholar 

  9. Zazhigalov VA, Khalameida SV, Litvin NS, Bacherikova IV, Stoch J, Depero L. Effect of the mechanochemical treatment of a V2O5/MoO3 oxide mixture on its properties. Kinet Catal. 2008;49:692–701.

    Article  CAS  Google Scholar 

  10. Bogutskaya LV, Khalameida SV, Zazhigalov VA, Kharlamov AI, Lyashenko LV, Byl’ OG. Effect of mechanochemical treatment on the structure and physicochemical properties of MoO3. Theor Exp Chem. 1999;35:242–6.

    Article  CAS  Google Scholar 

  11. Skwarek E, Khalameida S, Janusz W, Sydorchuk V, Konovalova N, Zazhigalov V, Skubiszewska-Zięba J, Leboda R. Influence of mechanochemical activation on structure and some properties of mixed vanadium-molybdenum oxides. J Therm Anal Calorim. 2011. doi:10.1007/s10973-011-1744-x.

  12. Milas NA, Surgenor DM. Studies in organic peroxides. VIII. t-butyl hydroperoxide and di-t-butyl peroxide. J Am Chem Soc. 1946;68:205–8.

    Article  CAS  Google Scholar 

  13. Khalameida S, Skubiszewska-Zięba J, Zazhigalov V, Leboda R, Wieczorek-Cuirowa K. Chemical and phase transformation in the V2O5-(NH4)2Mo2O7 system during the mechanochemical treatment in various media. J Therm Anal Calorim. 2010;101:823–32.

    Article  CAS  Google Scholar 

  14. Heinike G. Tribochemistry. Berlin: Academie Verlag; 1980.

    Google Scholar 

  15. Repelin Y, Husson E, Abello L, Lucazeau G. Structural study of gels of V2O5: normal coordinate analysis. Spectrochim Acta. 1985;41A:993–1003.

    CAS  Google Scholar 

  16. Eda K. Longitudinal-transverse splitting effects in IR absorption spectra of MoO3. J Solid State Chem. 1991;95:64–73.

    Article  CAS  Google Scholar 

  17. Davydov AA. Molecular spectroscopy of oxide catalyst surfaces. Chichester: Wiley and Sons; 2003.

    Book  Google Scholar 

  18. Khaleel AA, Klaubunde KJ. Characterization of aerogel prepared high-surface-area alumina: in situ FTIR study of dehydroxilation and pyridine adsorption. Chem Eur J. 2002;8:3991–8.

    Article  CAS  Google Scholar 

  19. Herrera JE, Kwak JH, Hu JZ, Wang Y, Peden CHF. Synthes of nanodispersed oxides of vanadium, titanium, molybdenum and tunsten on mesoporous silica using atomic layer deposition. Top Catal. 2006;39:245–55.

    Article  CAS  Google Scholar 

  20. Khodakov A, Yang J, Su S, Iglesia E, Bell AT. Structure and properties of vanadium oxide–zirconia catalysts for propane oxidative dehydrogenetion. J Catal. 1998;177:343–51.

    Article  CAS  Google Scholar 

  21. Thielemann JP, Ressler T, Walter A, Tzolova-Muller G, Hess C. Structure of molybdenum oxide supported on silica studied by Raman, UV-Vis and X-ray absorption spectroscopy. Appl Catal A. 2011;399:28–34.

    Article  CAS  Google Scholar 

  22. Hess C. Direct correlation of the dispersion and structure in vanadium oxide supported on silica SBA-15. J Catal. 2007;248:120–3.

    Article  CAS  Google Scholar 

  23. Bulanek R, Capek L, Setnička M, Cičmanec P. DR UV-Vis study of the supported vanadium oxide catalysts. J Phys Chem C. 2011;115:12430–8.

    Article  CAS  Google Scholar 

  24. Weber RS. Effect of local structure on the UV-visible absorption edges of molybdenum oxide clusters and supported molybdenum oxides. J Catal. 1995;151:470–4.

    Article  CAS  Google Scholar 

  25. Mestl G, Srinivasan TKK, Knozinger H. Mechanically activated MoO3. 3. Characterization by vibration spectroscopy. Langmuir. 1995;11:3795–804.

    Article  CAS  Google Scholar 

  26. Rana RK, Visvanathan B. Mo incorporation in MCM-41 type zeolite. Catal Lett. 1999;52:25–9.

    Article  Google Scholar 

  27. Lytvyn NS, Khalameida SV, Zazhigalov VO. Effect of the mechanochemical treatment on properties of MoO3. Rep Natl Acad Sci Ukraine. 2010;9:108–13 (in Russian).

    Google Scholar 

Download references

Acknowledgements

This paper (work) was supported by the European Community under a Marie Curie International Research Staff Exchange Scheme (IRSES), Project No 230790

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Sydorchuk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sydorchuk, V., Makota, O., Khalameida, S. et al. Physical–chemical and catalytic properties of deposited MoO3 and V2O5 . J Therm Anal Calorim 108, 1001–1008 (2012). https://doi.org/10.1007/s10973-011-1895-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-1895-9

Keywords

Navigation