Skip to main content
Log in

Thermal characterization of lovastatin in pharmaceutical formulations

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermogravimetry (TG) and differential scanning calorimetry (DSC) are useful techniques that have been successfully applied in the pharmaceutical industry to reveal important information regarding the physicochemical properties of drug and excipient molecules such as polymorphism, stability, purity, and formulation compatibility among others. In this study, lovastatin was studied by TG, DSC, and other techniques such as Fourier transform infrared spectroscopy, optical microscopy, X-ray diffraction, chromatography, and mass spectrometry. Lovastatin showed melting point at 445 K and thermal stability up to 535 K. It presented morphological polymorphism, which in the drug has the same unit cell, but with different crystal habits. Preservative excipient butylhydroxyanisole (BHA) causes amorphization of lovastatin crystallites and, therefore is incompatible with lovastatin. Degradation by hydrolysis was observed under neutral, acid, and basic conditions. The active degradation product, lovastatin hydroxyacid, was obtained after neutral and basic hydrolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Craig DQM, Reading M. Thermal analysis of pharmaceuticals. New York: CRC Press; 2007.

    Google Scholar 

  2. Wendlandt WW. Thermal analysis. 3rd ed. New York: Wiley; 1986.

    Google Scholar 

  3. Gabbott P. Principles and applications of thermal analysis. Oxford: Blackwell Publishing; 2008.

    Book  Google Scholar 

  4. Caira MR, Foppoli A, Sangalli ME, Zema L, Giordano F. Thermal and structural properties of ambroxol polymorphs. J Therm Anal Calorim. 2004;77:653–62.

    Article  CAS  Google Scholar 

  5. Freitas MN, Alves R, Matos JR, Marchetti JM. Thermal analysis applied in the osmotic tablets pre-formulation studies. J Therm Anal Calorim. 2007;87:905–11.

    Article  CAS  Google Scholar 

  6. Hassan MA, Salem MS, Sueliman MS, Najib NM. Characterization of famotidine polymorphic forms. Int J Pharm. 1997;149:227–32.

    Article  CAS  Google Scholar 

  7. Laszcz M, Kosmacinska B, Korczak K, Smigielska B, Glice M, Maruszak W, Groman A, Beczkowicz H, Zelazko L. Study on compatibility of imatinib mesylate with pharmaceutical excipients. J Therm Anal Calorim. 2007;88:305–10.

    Article  CAS  Google Scholar 

  8. Leitão MLP, Canotilho J, Cruz MSC, Pereira JC, Souza AT, Redinha JS. Study of polymorphism from DSC melting curves: polymorphs of terfenadine. J Therm Anal Calorim. 2002;68:397–412.

    Article  Google Scholar 

  9. Macedo RO, Nascimento TG, Veras JWE. Compatibility and stability studies of propranolol hydrochloride binary mixtures and tablets for TG and DSC-Photovisual. J Therm Anal Calorim. 2002;67:483–9.

    Article  CAS  Google Scholar 

  10. Oliveira GGG, Ferraz HG, Matos JSR. Thermoanalytical study of glibenclamide and excipients. J Therm Anal Calorim. 2005;79:267–70.

    Article  CAS  Google Scholar 

  11. Porter WW III, Elie SC, Matzger AJ. Polymorphism in carbamazepina cocrystals. Cryst Growth Des. 2008;8:14–6.

    Article  CAS  Google Scholar 

  12. Stulzer HK, Rodrigues PO, Cardoso TM, Matos JSR, Silva MAS. Compatibility studies between captopril and pharmaceutical excipients used in tablets formulations. J Therm Anal Calorim. 2008;91:323–8.

    Article  CAS  Google Scholar 

  13. Hebert PR, Gaziano JM, Chan KS, Hennekens CH. Cholesterol lowering with statins drugs, risk of stroke and total mortality. An overview of randomized trial. JAMA. 1997;278:313–21.

    Article  CAS  Google Scholar 

  14. Baigent C, Keech A, Kearney PM, Blackwell L, Buck G, Pollicino C, Kirby A, Sourjina T, Peto R, Collins R, Semes R. Cholesterol treatment trialists (CTT) collaborators: efficacy and safety of cholesterol-lowering treatment: propective meta-analysis of data from 90,056 participants in 14 randomized trials of statins. Lancet. 2005;366:1267–78.

    Article  CAS  Google Scholar 

  15. Ward S, Lloyd JM, Pandor A, Holmes M, Ara R, Ryan A, Yeo W, Payne N. A systematic review and economic evaluation of statins for the prevention of coronary events. Health Technol Assess. 2007;11:1–160.

    Google Scholar 

  16. Scientific Steering Committee on behalf of the Simon Broome Register Group. Mortality in treated heterozygous familial hypercholesterolaemia: implications for clinical management. Atherosclerosis. 1999;142:105–12.

    Google Scholar 

  17. Rodenburg J, Vissers MN, Wiegman A, Trotsenburg ASP, Graaf A, Groot E, Wijburg FA, Kastelein JJP, Hutten BA. Statin treatment in children with familial hypercholesterolemia: the younger, the better. Circulation. 2007;116:664–8.

    Article  CAS  Google Scholar 

  18. The Merck Index, Version 12:3 [Cd-Rom], Chapman & Hall, New York; 1999.

  19. Moffat AC, Osselton MD, Widdop B. Clarke’s analysis of drugs and poisons: in pharmaceuticals, body fluids and postmortem material, vol. 2. 3rd ed. London: Pharmaceutical Press; 2004.

    Google Scholar 

  20. Amidon GL, Kasim NA, Whitehouse M, Ramachandran C, Bermejo M, Lennernas H, Hussain AS, Junginger HE, Stavchansky SA, Midha KK, Shah VP. Molecular properties of WHO essential drugs and provisional biopharmaceutical classification. Mol Pharm. 2004;1:85–96.

    Article  Google Scholar 

  21. FDA—Food and Drug Administration. Guidance for industry. Dissolution testing of immediate release solid oral dosage forms. FDA, CDER, 1997.

  22. Balestrieri F, Magri AD, Magri AL, Marini D, Sacchini A. Application of differencial scanning calorimetry to the study of drug-excipient compatibility. Thermochim Acta. 1996;285:337–45.

    Article  CAS  Google Scholar 

  23. Bazzo GC, Segatto Silva GC. Estudo termoanalítico de comprimidos revestidos contendo captopril através de termogravimetria (TG) e calorimetria exploratória diferencial (DSC). Braz J Pharm Sci. 2005;41:315–22.

    CAS  Google Scholar 

  24. Cides LCS, Araújo AAS, Santos-Filho M, Matos JR. Thermal behaviour, compatibility study and decomposition kinetics of glimepiride under isothermal and non-isothermal conditions. J Therm Anal Calorim. 2006;84:441–5.

    Article  CAS  Google Scholar 

  25. Carini JP, Pavei C, Silva APC, Machado G, Mexias AS, Pereira VP, Fialho SL, Mayorga P. Solid state evaluation of some thalidomide raw materials. Int J Pharm. 2009;372:17–23.

    Article  CAS  Google Scholar 

  26. Sperandeo NR, Karlsson A, Cuffini S, Pagola S, Stephens PW. The crystal structure and physicochemical characteristics of 2-hydroxy-N-[3(5)-pyrazolyl]-1,4-naphthoquinone-4-imine, a new antitrypanosomal compound. AAPS Pharm. Sci Technol. 2005;6:E655–63.

    Article  Google Scholar 

  27. Tedesco E, Giron D, Pfeffer S. Crystal structure elucidation and morphology study of pharmaceuticals in development. Cryst Eng Commun. 2002;4:393–400.

    CAS  Google Scholar 

  28. The United States pharmacopeia. 31st ed. Rockville: United States Pharmacopeial Convention; 2008.

  29. ICH Q2 (R1)—International conference on harmonization of technical requirements for the registration of drugs for human use. Validation of analytical procedures: text and methodology Q2(R1), Nov, 2005. http://www.ich.org/LOB/media/MEDIA417.pdf.

  30. Snyder LR, Kirkland JJ, Glajch JL. Pratical HPLC method development. 2nd ed. New York: Wiley; 1997.

    Google Scholar 

  31. British pharmacopoeia 2007, Version 11.0 [Cd-Rom], London: The Stationery Office; 2007.

  32. ICH Q1A (R2)—International conference on harmonization of technical requirements for the registration of drugs for human use. Stability testing of new drug substances and products Q1A(R2), Feb, 2003. http://www.ich.org/LOB/media/MEDIA419.pdf.

  33. Sundaram V, Kharkar MR, Yarraguntla SR, Gudipati S, Mandava VNBR. Amorphous simvastatin. US patent application publication, US 2006/0223882 A1, Oct. 5; 2006.

  34. Macedo RO, Nascimento TG, Aragão CFS, Barreto Gomes AP. Application of thermal analysis in the characterization of anti-hypertensive drugs. J Therm Anal Calorim. 2000;59:657–61.

    Article  CAS  Google Scholar 

  35. Ferguson HF, Frurip DJ, Pastor AJ, Peerey LM, Whiting LF. A review of analytical applications of calorimetry. Therm Acta. 2000;363:1–21.

    Article  CAS  Google Scholar 

  36. Rodrigues PO, Cardoso TFM, Silva MAS, Matos JR. Aplicação de técnicas termoanalíticas na caracterização, determinação da pureza e cinética de degradação da zidovudina (AZT). Acta Farm Bonaer. 2005;24:383–7.

    CAS  Google Scholar 

  37. Lueje AA, Pastine J, Squella JA, Nunez-Vergara LJ. Assessment of the hydrolytic degradation of lovastatin by HPLC. J Chil Chem Soc. 2005;50:639–46.

    Google Scholar 

  38. Moffat AC, Osselton MD, Widdop B. Clarke’s analysis of drugs and poisons: in pharmaceuticals, body fluids and postmortem material, vol. 1. 3rd ed. London: Pharmaceutical Press; 2004.

    Google Scholar 

Download references

Acknowledgements

FAPES, CNPq, and FAPEMIG are acknowledged for financial support and Laboratório Teuto Brasileiro for the raw materials donation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Yoshida.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshida, M.I., Oliveira, M.A., Gomes, E.C.L. et al. Thermal characterization of lovastatin in pharmaceutical formulations. J Therm Anal Calorim 106, 657–664 (2011). https://doi.org/10.1007/s10973-011-1510-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-1510-0

Keywords

Navigation