Skip to main content
Log in

Thermal, physicochemical and microstructural studies of binary organic eutectic systems

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Solid–liquid phase equilibrium data of three binary organic systems, namely, 3-hydroxybenzaldehyde (HB)—4-bromo-2-nitroanilne (BNA), benzoin (BN)—resorcinol (RC) and urea (U)—1,3-dinitrobenzene (DNB), were studied by the thaw–melt method. While the former two systems show the formation of simple eutectic, the third system shows the formation of a monotectic and a eutectic with a large immiscibility region where two immiscible liquid phases are in equilibrium with a liquid of single phase. Growth kinetics of the pure components, the monotectic and the eutectics, studied by measuring the rate of movement (v) of solid–liquid interface in a thin U-tube at different undercoolings (ΔT) suggests the applicability of the Hillig–Turnbull’s equation: v = uT)n, where v and n are the constants depending on the nature of the materials involved. The thermal properties of materials such as heat of mixing, entropy of fusion, roughness parameter, interfacial energy, and excess thermodynamic functions were computed from the enthalpy of fusion values, determined by differential scanning calorimeter (Mettler DSC-4000) system. The role of solid–liquid interfacial energy on morphologic change of monotectic growth has also been discussed. The microstructures of monotectic and eutectics were taken which showed lamellar and federal features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Herlach DM, Cochrane RF, Egry I, Fecht HJ, Greer AL. Containerless processing in the study of metallic melts and their solidification. Int Mater Rev. 1993;38:273–347.

    CAS  Google Scholar 

  2. Predel B. Constitution and thermodynamics of monotectic alloys: a survey. J Phase Equilibr. 1997;18(4):327–37.

    Article  CAS  Google Scholar 

  3. Trivedi R, Kurz W. Dendritic growth. Int Mater Rev. 1994;39(2):49–74.

    CAS  Google Scholar 

  4. Majumdar B, Chattopadhyay K. The Rayleigh instability and the origin of rows of droplets in the monotectic microstructure of zinc–bismuth alloys. Met Trans A. 1996;27(A):2053–7.

    Google Scholar 

  5. Ji H-Z, Meng X-C, Zhao H-K. (Solid + liquid) equilibrium of (4-chloro-2-benzofuran-1,3-dione + 5-chloro-2-benzofuran-1,3-dione). J Chem Eng Data. 2010;55:2590–3.

    Article  CAS  Google Scholar 

  6. Gupta P, Agrawal T, Das SS, Singh NB. Solvent free reactions, Reactions of nitrophenols in 8-hydroxyquinoline–benzoic acid eutectic melt. J Therm Anal Calorim. doi:10.1007/s10973-010-1255-1.

  7. Fu J, Rice JW, Suuberg EM. Phase behavior and vapor pressures of the pyrene + 9,10-dibromoanthracene system. Fluid Phase Equilibria. 2010;298:219–24.

    Article  CAS  Google Scholar 

  8. Peters CA, Wammer KH, Knightes CD. Multicomponent NAPL solidification thermodynamics. Transp Porous Media. 2000;38:57–77.

    Article  CAS  Google Scholar 

  9. Rice JW, Suuberg EM. Thermodynamic study of (anthracene + aenzo[a]pyrene) solid mixtures. J Chem Thermodyn. 2010;42:1356–60.

    Article  CAS  Google Scholar 

  10. Farges JP. Organic conductors. New York: Marcel Dekker Inc.; 1994.

    Google Scholar 

  11. Gunter P. Nonlinear optical effects and materials. Berlin: Springer; 2000. p. 540.

    Google Scholar 

  12. Singh NB, Henningsen T, Hopkins RH, Mazelsky R, Hamacher RD, Supertzi EP, Hopkins FK, Zelmon DE, Singh OP. Nonlinear optical characteristics of binary organic system. J Cryst Growth. 1993;128:976–80.

    Article  CAS  Google Scholar 

  13. Dwivedi Y, Kant S, Rai RN, Rai SB. Efficient white light generation from 2,3-diphenyl-1,2-dihydro-quinoxaline complex. Appl Phys B. 2010;101:639–42.

    Article  CAS  Google Scholar 

  14. Choi J, Aggarwal MD, Wang WS, Penn BG, Frazier DO. Binary organic single crystals for nonlinear optical application. J Korean Phys Soc. 1998;32:S433–5.

    CAS  Google Scholar 

  15. Rai RN, Lan CW. Crystal structure and properties of new organic nonlinear optical material. J Mater Res. 2002;17(7):1587–91.

    Article  CAS  Google Scholar 

  16. Derby B, Favier JJ. A criterion for the determination of monotectic structure. Acta Met. 1983;7:1123–30.

    Article  Google Scholar 

  17. Ecker A, Frazier DO, Alexander JID. Fluid flow in solidifying monotectic alloys. Metall Trans. 1989;20A:2517–27.

    CAS  Google Scholar 

  18. Dean JA. Lange’s handbook of chemistry. New York: McGraw-Hill; 1985.

    Google Scholar 

  19. Sharma KP, Rai RN. Novel organic monotectic alloy and its thermal, physicochemical, and microstructural studies. J Mater Sci. 2011;46:1551–6.

    Article  CAS  Google Scholar 

  20. Rai RN. Phase diagram, optical, nonlinear optical, and physicochemical studies of the organic monotectic system: pentachloropyridine-succinonotrile. J Mater Res. 2004;19(5):1348–55.

    Article  CAS  Google Scholar 

  21. Rai US, Rai RN. Physical chemistry of organic eutectic and monotectic: hexamethylbenzene-succinonitrile system. Chem Mater. 1999;11(11):3031–6.

    Article  CAS  Google Scholar 

  22. Kant S, Rai RN. Solid–liquid equilibrium and thermochemical studies of organic analogue of metal-nonmetal system: succinonitrile-pentachloronitrobenzene. Thermochim Acta. 2011;512:49–54.

    Article  CAS  Google Scholar 

  23. Rai US, Rai RN. Physical chemistry of organic eutectics. J Therm Anal Calorim. 1998;53:883–93.

    Article  CAS  Google Scholar 

  24. Rai RN, Mudunuri SR, Reddi RSB, Satuluri VSA Kumar, Ganeshmoorthy S Gupta PK. Crystal growth and nonlinear optical studies of m-dinitrobenzene doped urea. J Cryst Growth. (2011). doi:10.1016/j.jcrysgro.2011.02.019.

  25. Hillig WB, Turnbull D. Theory of Crystal growth in undercooled pure liquids. J Chem Phys. 1956;24:914.

    Article  CAS  Google Scholar 

  26. Winegard WC, Majka S, Thall BM, Chalmers B. Eutectic solidification in metals. Can J Chem. 1951;29:320–7.

    Article  CAS  Google Scholar 

  27. Rai RN, Rai US. Solid–liquid equilibrium and thermochemical properties of organic eutectic in a monotectic system. Thermochim Acta. 2000;363:23–8.

    Article  CAS  Google Scholar 

  28. Rai US, Rai RN. Physical chemistry of the organic analog of metal–metal eutectic and monotectic alloys. J Cryst Growth. 1998;191:234–42.

    Article  CAS  Google Scholar 

  29. Singh N, Singh Narsingh B, Rai US, Singh OP. Structure of eutectic melts; binding organic systems. Thermochim Acta. 1985;95:291–3.

    Article  CAS  Google Scholar 

  30. Rai RN, Rai US, Varma KBR. Thermal, miscibility gap and microstructural studies of organic analog of metal-nonmetal system: p-dibromobenzene-succinonitrile. Thermochim Acta. 2002;387:101–7.

    Article  CAS  Google Scholar 

  31. Eustathopoulos N, Nicholas MG, Drevet B. Wettability at high temperatures. Pergamon, Oxford: Pergamon Materials Series; 1999.

    Google Scholar 

  32. Christian JW. The theory of phase transformation in metals and alloys. Oxford: Pergamon Press; 1965. p. 992.

    Google Scholar 

  33. Kaukler WF, Frazier DO. Observations of a monotectic solidification interface morphology. J Cryst Growth. 1985;71:340–5.

    Article  CAS  Google Scholar 

  34. Singh NB, Rai US, Singh OP. Chemistry of eutectic and monotectic; phenanthrene-succinonitrile system. J Cryst Growth. 1985;71:353–60.

    Article  CAS  Google Scholar 

  35. Hunt JD, Jackson KA. Binary eutectic solidification. Trans Met Soc AIME. 1966;236:843–52.

    CAS  Google Scholar 

  36. Chadwick GA. Monotectic solidification. Br J Appl Phys. 1965;16:1095–7.

    Article  CAS  Google Scholar 

  37. Cahn JW. Critical point wetting. J Chem Phys. 1977;66:3667–72.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Board of Research in Nuclear Science, Department of Atomic Energy, Mumbai, India for thier financial support, and the Head, Department of Chemistry for providing the necessary infrastructure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. N. Rai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reddi, R.S.B., Satuluri, V.S.A.K., Rai, U.S. et al. Thermal, physicochemical and microstructural studies of binary organic eutectic systems. J Therm Anal Calorim 107, 377–385 (2012). https://doi.org/10.1007/s10973-011-1478-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-1478-9

Keywords

Navigation