Skip to main content
Log in

Thermal characterization of a series of poly(vinylidenefluoride–chlorotrifluoroethylene–trifluoroethylene) terpolymer films

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A number of solution-casted poly(vinylidenefluoride–chlorotrifluoroethylene–trifluoroethylene) [P(VDF–CTFE–TrFE)] terpolymer films with different CTFE content have been characterized by a series of thermal analysis techniques, including thermogravimetric analysis (TG), differential scanning calorimetry, dynamic mechanical analysis (DMA) and thermal mechanical analysis (TMA). The work intends to provide more comprehensive information about thermal behavior of these ferroelectric polymers. TG results suggest that the introduction of the CTFE units slightly decreases the thermal stability of the polymer due to the instability of C–Cl bond during heating. DMA detected a relatively weak αa relaxation and a broad αc relaxation in the samples of low CTFE content. These two relaxation processes completely mixed together in the sample with high CTFE content, revealing the crystalline structures in the polymer, become a more imperfect and diffuse state as CTFE units increasing. The polymer with less CTFE units possesses an enhanced stiffness due to its higher degree of crystallinity. A contraction process after a slight amount of thermal expansion upon heating is detected by TMA, due to the release of internal tensile strain/stress generated during solidification of the films. The higher crystallinity of the polymer film generated the greater strain/stress, leading to the larger degree of shrinkage. Also, the higher melting point of the polymer with less CTFE units allows the film soften at a higher temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Herbert JM, Glass AM, Wang TT. The application of ferroelectric polymers. New York: Chapman & Hall; 1988.

    Google Scholar 

  2. Naber RCG, Tanase C, Blom PWM, Gelinck GH, Marsman AW, Touwslager FJ, et al. High-performance solution-processed polymer ferroelectric field-effect transistors. Nat Mater. 2005;4(3):243–8.

    Article  CAS  Google Scholar 

  3. Stadlober B, Zirkl M, Beutl M, Leising G, Bauer-Gogonea S, Bauer S. High-mobility pentacene organic field-effect transistors with a high-dielectric-constant fluorinated polymer film gate dielectric. Appl Phys Lett. 2005;86(24):242902. doi:10.1063/1.1946190.

    Article  Google Scholar 

  4. Müller K, Paloumpa I, Henkel K, Schmeisser D. A polymer high-k dielectric insulator for organic field-effect transistors. J Appl Phys. 2005;98(5):056104. doi:10.1063/1.2032611.

    Article  Google Scholar 

  5. Chu B, Zhou X, Ren K, Neese B, Lin M, Wang Q, et al. A dielectric polymer with high electric energy density and fast discharge speed. Science. 2006;313(5785):334–6. doi:10.1126/science.1127798.

    Article  CAS  Google Scholar 

  6. Lovinger AJ. Ferroelectric polymers. Science. 1983;220(4602):1115–21. doi:10.1126/science.220.4602.1115.

    Article  CAS  Google Scholar 

  7. Kawai H. The piezoelectricity of poly(vinylidene fluoride). Jpn J Appl Phys. 1969;8(7):975–6.

    Article  CAS  Google Scholar 

  8. Bergman JG, McFee JH, Crane GR. Pyroelectricity and optical second harmonic generation in poly(vinylidene fluoride) films. Appl Phys Lett. 1971;18(5):203–5.

    Article  CAS  Google Scholar 

  9. Tamura M, Ogasawara K, Ono N, Hagiwara S. Piezoelectricity in uniaxially stretched poly (vinylidene fluoride). J Appl Phys. 1974;45(9):3768–71.

    Article  CAS  Google Scholar 

  10. Yagi T, Tatemoto M, Sako J-i. Transition behavior and dielectric properties in trifluoroethylene and vinylidene fluoride copolymers. Polym J. 1980;12(4):209–23.

    Article  CAS  Google Scholar 

  11. Bune AV, Fridkin VM, Ducharme S, Blinov LM, Palto SP, Sorokin AV, et al. Two-dimensional ferroelectric films. Nature. 1998;391(6670):874.

    Article  CAS  Google Scholar 

  12. Zhang QM, Bharti V, Zhao X. Giant electrostriction and relaxor ferroelectric behavior in electron-irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer. Science. 1998;280(5372):2101.

    Article  CAS  Google Scholar 

  13. Tashiro K, Tadokoro H, Kobayashi M. Structure and piezoelectricity of poly(vinylidene fluoride). Ferroelectrics. 1981;32(1):167–75.

    Article  CAS  Google Scholar 

  14. Nalwa HS. Recent developments in ferroelectric polymers. J Macromol Sci Poly Rev. 1991;C31(4):341–432.

    CAS  Google Scholar 

  15. Furukawa T. Structure and functional properties of ferroelectric polymers. Adv Colloid Interface. 1997;71–72:183–208. doi:10.1016/s0001-8686(97)90017-8.

    Google Scholar 

  16. Higashihata Y, Sako J, Yagi T. Piezoelectricity of vinylidene fluoride–trifluoroethylene copolymers. Ferroelectrics. 1981;32(1):85–92.

    Article  CAS  Google Scholar 

  17. Furukawa T. Ferroelectric behavior in the copolymer of vinylidenefluoride and trifluoroethylene. Jpn J Appl Phys. 1980;19(2):109–12.

    Article  Google Scholar 

  18. Yamada T, Ueda T, Kitayama T. Ferroelectric-to-paraelectric phase transition of vinylidene fluoride-trifluoroethylene copolymer. J Appl Phys. 1981;52(2):948–52.

    Article  CAS  Google Scholar 

  19. Chung TC, Petchsuk A. Ferroelectric VDF/TrFE/CTFE terpolymers: synthesis and electric properties. In: Bar-Cohen Y, editor. Smart structures and materials 2001: electroactive polymer actuators and devices: The International Society for Optical Engineering; 2001. p. 117–24.

  20. Xu H, Cheng ZY, Olson D, Mai T, Zhang QM, Kavarnos G. Ferroelectric and electromechanical properties of poly(vinylidene–fluoride–trifluoroethylene–chlorotrifluoroethylene) terpolymer. Appl Phys Lett. 2001;78(16):2360.

    Article  CAS  Google Scholar 

  21. Chung TC, Petchsuk A, Taylor GW. Ferroelectric polymers with large electrostriction; based on semicrystalline VDF/TrFE/CTFE terpolymers. Ferroelectrics Lett. 2001;28(5):135–43.

    Article  CAS  Google Scholar 

  22. Chung TC, Petchsuk A. Synthesis and properties of ferroelectric fluoroterpolymers with Curie transition at ambient temperature. Macromolecules. 2002;35(20):7678–84. doi:10.1021/ma020504c.

    Article  CAS  Google Scholar 

  23. Xia F, Cheng Z, Xu H, Li H, Zhang Q, Kavarnos GJ, et al. High electromechanical responses in a poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) terpolymer. Adv Mater. 2002;14(21):1574–7.

    Article  CAS  Google Scholar 

  24. Buckley GS, Roland CM, Casalini R, Petchsuk A, Chung TC. Electrostrictive properties of poly(vinylidenefluoride–trifluoroethylene–chlorotrifluoroethylene). Chem Mater. 2002;14(6):2590–3. doi:10.1021/cm0116471.

    Article  CAS  Google Scholar 

  25. Klein RJ, Runt J, Zhang QM. Influence of crystallization conditions on the microstructure and electromechanical properties of poly(vinylidene fluoride–trifluoroethylene–chlorofluoroethylene) terpolymers. Macromolecules. 2003;36(19):7220–6. doi:10.1021/ma034745b.

    Article  CAS  Google Scholar 

  26. Bauer F, Fousson E, Zhang QM, Lee LM. Ferroelectric copolymers and terpolymers for electrostrictors: synthesis and properties. IEEE Trans Diel Elec Insu. 2004;11(2):293–8.

    Article  CAS  Google Scholar 

  27. Xu H, Shen D, Zhang Q. Structural and ferroelectric response in vinylidene fluoride/trifluoroethylene/hexafluoropropylene terpolymers. Polymer. 2007;48(7):2124–9. doi:10.1016/j.polymer.2007.02.035.

    Article  CAS  Google Scholar 

  28. Hulburt JD, Feiring AE. Trifluoroethylene deflagration. Chem Eng News. 1997;75(51):6.

    Article  CAS  Google Scholar 

  29. Lu Y, Claude J, Neese B, Zhang Q, Wang Q. A modular approach to ferroelectric polymers with chemically tunable curie temperatures and dielectric constants. J Am Chem Soc. 2006;128(25):8120–1. doi:10.1021/ja062306x.

    Article  CAS  Google Scholar 

  30. Lu Y, Claude J, Zhang Q, Wang Q. Microstructures and dielectric properties of the ferroelectric Fluoropolymers synthesized via reductive dechlorination of poly(vinylidene fluoride-co-chlorotrifluoroethylene)s. Macromolecules. 2006;39(20):6962–8. doi:10.1021/ma061311i.

    Article  CAS  Google Scholar 

  31. Wang Z, Zhang Z, Chung TCM. High dielectric VDF/TrFE/CTFE terpolymers prepared by hydrogenation of VDF/CTFE copolymers:synthesis and characterization. Macromolecules. 2006;39(13):4268–71. doi:10.1021/ma060738m.

    Article  CAS  Google Scholar 

  32. Lu Y, Claude J, Norena-Franco LE, Wang Q. Structural dependence of phase transition and dielectric relaxation in ferroelectric poly(vinylidene fluoride–chlorotrifluoroethylene–trifluoroethylene)s. J Phys Chem B. 2008;112(34):10411–6. doi:10.1021/jp802413g.

    Article  CAS  Google Scholar 

  33. Li H, Tan K, Hao Z, He G. Preparation and crystallization behavior of poly(vinylidene fluoride-ter-chlorotrifluoroethylene-ter-trifluoroethylene). J Appl Polym Sci (Accepted)

  34. Sencadas V, Lanceros-Me′ndez S, Mano JF. Thermal characterization of a vinylidene fluoride-trifluoroethylene (75–25) (%mol) copolymer film. J Non-Cryst Solids. 2006;352(50–51):5376–81.

    Article  CAS  Google Scholar 

  35. Varma AJ, Deshpande SV, Kondapalli P. A comparative study of the thermal behavior of PVC, a series of synthesized chlorinated polyethylenes and HDPE. Polym Degrad Stabil. 1999;63(1):1–3. doi:10.1016/s0141-3910(98)00051-2.

    Article  CAS  Google Scholar 

  36. Zulfiqar S, Zulfiqar M, Rizvi M, Munir A, McNeill IC. Study of the thermal degradation of polychlorotrifluoroethylene, poly(vinylidene fluoride) and copolymers of chlorotrifluoroethylene and vinylidene fluoride. Polym Degrad Stabil. 1994;43(3):423–30. doi:10.1016/0141-3910(94)90015-9.

    Article  CAS  Google Scholar 

  37. Mano JF, Sencadas V, Costa AM, Lanceros-Méndez S. Dynamic mechanical analysis and creep behaviour of β-PVDF films. Mater Sci Eng A 2004;370(1–2):336–40. doi:10.1016/j.msea.2002.12.002.

    Google Scholar 

  38. Sencadas V, Lanceros-Méndez S, Mano JF. Characterization of poled and non-poled β-PVDF films using thermal analysis techniques. Thermochim Acta. 2004;424(1–2):201–7.

    Article  CAS  Google Scholar 

  39. Francis LF, McCormick AV, Vaessen DM, Payne JA. Development and measurement of stress in polymer coatings. J Mater Sci. 2002;37(22):4717–31. doi:10.1023/a:1020886802632.

    Article  CAS  Google Scholar 

  40. Diane M, Whitmore PM, editors. The development of internal stress in films of thermoplastic polymers cast from solution. Materials Research Society Symposium Proceedings; 1995.

  41. Croll SG. Internal stress in a solvent-cast thermoplastic coating. J Coat Technol. 1978;50(638):33–8.

    CAS  Google Scholar 

  42. Croll SG. The origin of residual internal stress in solvent-cast thermoplastic coatings. J Appl Polym Sci. 1979;23(3):847–58. doi:10.1002/app.1979.070230319.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study is supported by the National Natural Science Foundation of China under Contract 50703048.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hengfeng Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H., Tan, K., Hao, Z. et al. Thermal characterization of a series of poly(vinylidenefluoride–chlorotrifluoroethylene–trifluoroethylene) terpolymer films. J Therm Anal Calorim 105, 357–364 (2011). https://doi.org/10.1007/s10973-011-1427-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-1427-7

Keywords

Navigation