Skip to main content
Log in

Thermodynamics of carbosilane dendrimers with diundecylsilyl and diundecylsiloxane terminal groups

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this study for the first time the temperature dependences of the heat capacity C 0p and enthalpies of physical transitions of carbosilane dendrimers with diundecylsilyl and diundecylsiloxane terminal groups of the fifth generation have been measured using the methods of precision adiabatic vacuum calorimetry and differential scanning calorimetry over the range from 6 to 580 K. In the above temperature ranges the physical transformations have been detected and their thermodynamic characteristics were estimated and analyzed. The standard thermodynamic functions: heat capacity C 0p (T), enthalpy H°(T) − H°(0), entropy S°(T) − S°(0), and free Gibbs energy G°(T) − H°(0) and standard entropies of formation of dendrimers at T = 298.15 K have been calculated over the range from T → 0 K to 580 K. The thermodynamic properties of studied dendrimers have been compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Tomalia DA, Naylor AM, Goddart WA. Starburst dendrimers: molecular-level control of size, shape, surface chemistry, topology, and flexibility from atoms to macroscopic matter. Angew Chem Int Ed Engl. 1990;29:138–75.

    Article  Google Scholar 

  2. Newkome GR. Advances in dendritic macromolecules. Greenwich: JAI Press; 1994.

    Google Scholar 

  3. Astruc D, Chardac F. Dendritic catalysts and dendrimers in catalysis. Chem Rev. 2001;101:2991–3023.

    Article  CAS  Google Scholar 

  4. Muzafarov AM, Rebrov EA, Papkov VS. Three-dimensionally growing polyorganosiloxanes. Possibilities of molecular construction in highly functional systems. Russ Chem Rev. 1991;60:807–14.

    Article  Google Scholar 

  5. Beletskaya IP, Chuchuryukin AV. Synthesis and properties of functionalized dendrimers. Russ Chem Rev. 2000;69:639–60.

    Article  CAS  Google Scholar 

  6. Lorenz K, Mulhaupt R, Frey H, Rapp U. Mayer-Posner F.J. Carbosilane-based dendritic polyols. Macromolecules. 1995;28:6657–61.

    Article  CAS  Google Scholar 

  7. Wooley KL, Hawker CJ, Pochan JM, Frechet GMJ. Physical properties of dendritic macromolecules: a study of glass transition temperature. Macromolecules. 1993;26:1514–9.

    Article  CAS  Google Scholar 

  8. Lorenz K, Frey H, Stuhn B, Mulhaupt R. Carbosilane dendrimers with perfluoroalkyl end groups. Core–shell macromolecules with generation-dependent. order macromolecules. 1997;30:6860–8.

    Article  CAS  Google Scholar 

  9. Lebedev BV, Smirnova NN, Ryabkov MV, Ponomarenko SA, Makeev EA, Boiko NI, Shibaev VP. Thermodynamic properties of carbosilane dendrimer of the first generation with terminal methoxyundecylenate groups in the range 0–340 K. Polym Sci Ser A. 2001;43:323–31.

    Google Scholar 

  10. Ryabkov MV, Kulagina TG, Lebedev BV. Thermodynamic properties of carbosilane dendrimers of the first and second generations with terminal allyl groups in the range 0–340 K. Russ J Phys Chem. 2001;75:1988–96.

    Google Scholar 

  11. Lebedev BV, Ryabkov MV, Tatarinova EA, Rebrov EA, Muzafarov AM. Thermodynamic properties of the first to fifth generations of carbosilane dendrimers with allyl terminal groups. Russ Chem Bull. 2003;52:545–51.

    Article  CAS  Google Scholar 

  12. Smirnova NN, Lebedev BV, Khramova NM, Tsvetkova LYa, Tatarinova EA, Myakushev VD, Muzafarov AM. The thermodynamic properties of carbosilane dendrimers of the sixth and seventh generations with terminal groups in the temperature range 6–340 K. Russ J Phys Chem. 2004;78:1369–74.

    CAS  Google Scholar 

  13. Smirnova NN, Stepanova OV, Bykova TA, Muzafarov AM, Tatarinova EA, Myakushev VD. Thermodynamic properties of carbosilane dendrimers of the third to the sixth generations with terminal butyl groups in the range from T → 0 to 600 K. Thermochim Acta. 2006;440:188–94.

    Article  CAS  Google Scholar 

  14. Smirnova NN, Stepanova OV, Bykova TA, Markin AV, Tatarinova EA, Muzafarov AM. Thermodynamic properties of carbosilane dendrimers of the seventh and ninth generations with terminal butyl groups in the temperature range from T → 0 to 600 K. Russ Chem Bull. 2007;56:1991–5.

    Article  CAS  Google Scholar 

  15. Lebedev BV, Kulagina TG, Ryabkov MV, Ponomarenko SA, Makeev EA, Boiko NI, Shibaev VP, Rebrov EA, Musafarov AM. Carbosilane dendrimer of second generation with terminal methoxyundecylenate groups. J Therm Anal Calorim. 2003;71:481–92.

    Article  CAS  Google Scholar 

  16. Tereshchenko AS, Tupitsyna GS, Tatarinova EA, Bystrova AV, Muzafarov AM, Smirnova NN, Markin AV. Carbosilane dendrimers with diundecylsilyl, diundecylsiloxane, and tetrasiloxane terminal groups: synthesis and properties. Polym Sci Ser B. 2010;52:41–8.

    Article  Google Scholar 

  17. Varushchenko RM, Druzhinina AI, Sorkin EL. Low-temperature heat capacity of 1-bromoperfluorooctane. J Chem Thermodyn. 1997;29:623–7.

    Article  CAS  Google Scholar 

  18. Malyshev VM, Milner GA, Sorkin EL, Shibakin VF. Automatic low-temperature calorimeter. Pribory i Tekhnika Eksperimenta. 1985;6:195–7.

    Google Scholar 

  19. Paukov IE, Kovalevskaya YA, Kiseleva IA, Shuriga TN. A low-temperature heat capacity study of natural lithium micas. J Therm Anal Calorim. 2010;992:709–12.

    Article  Google Scholar 

  20. Yagfarov MSh. Novii metod izmerenia teploemkostei i teplovih effektov. Zh Fiz Khimii. 1969;43:1620–5.

    CAS  Google Scholar 

  21. Kabo AG, Diky VV. Details of calibration of a scanning calorimeter of the triple heat bridge type. Thermochim Acta. 2000;347:79–84.

    Article  CAS  Google Scholar 

  22. Lazarev VB, Izotov AD, Gavrichev KS, Shebershneva OV. Fractal model of heat capacity for substances with diamond-like structures. Thermochim Acta. 1995;269–270:109–16.

    Article  Google Scholar 

  23. Tarasov VV. Theory of heat capacity of chain and layer structures. Zhurnal fizicheskoi khimii. 1950;24:111–28.

    CAS  Google Scholar 

  24. Alford S, Dole M. Specific heat of synthetic high polymers. VI. Study of the glass transition in polyvinyl chloride. J Chem Soc. 1955;77:4774–7.

    Article  CAS  Google Scholar 

  25. Smirnova NN, Lebedev BV, Bykova TA, Markin AV, Tur DR. Thermodynamic properties of poly-[bis(trifluoroetoxy)-phosphazene] in the range from T → 0 to 620 K. J Therm Anal Calorim. 2009;95:229–34.

    Article  CAS  Google Scholar 

  26. Wunderlich B. Thermodynamic description of condensed phases. J Therm Anal Calorim. 2010;102:413–24.

    Article  CAS  Google Scholar 

  27. Kauzmann W. The Nature of the glassy state and the behavior of liquids at low temperatures. Chem Rev. 1948;43:219–56.

    Article  CAS  Google Scholar 

  28. Adam G, Gibbs JU. On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J Chem Phys. 1965;43:139–46.

    Article  CAS  Google Scholar 

  29. Bestul A, Chang SS. Excess entropy at glass transformation. J Chem Phys. 1964;40:3731–3.

    Article  CAS  Google Scholar 

  30. Rabinovich IB, Nistratov VP, Telnoy VI, Sheiman MS. Thermochemical and thermodynamic properties of organometallic compounds. New York: Begell House Inc. Publishers; 1999.

    Google Scholar 

  31. Lebedev BV. Thermodynamics of polymers. Gorky: Gorky State University; 1989.

    Google Scholar 

  32. Cox JD, Wagman DD, Medvedev VA. Codata key values for thermodynamics. New York; 1984. Database http://webbook.nist.gov/chemistry/.

  33. Chase MW Jr. NIST-JANAF themochemical tables. 4th ed. J Phys Chem Ref Data Monogr. 1998;9:1951. Database http://webbook.nist.gov/chemistry/.

Download references

Acknowledgements

This study was financially supported by the Russian Foundation for Basic Research (project 08-03-00214a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Markin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Markin, A.V., Samosudova, Y.S., Smirnova, N.N. et al. Thermodynamics of carbosilane dendrimers with diundecylsilyl and diundecylsiloxane terminal groups. J Therm Anal Calorim 105, 663–676 (2011). https://doi.org/10.1007/s10973-010-1199-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-1199-5

Keywords

Navigation