Skip to main content
Log in

Thermal properties of anhydride-cured bio-based epoxy blends

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Epoxidized palm oil (EPO) (0–12 wt%) was added into petrochemical-based epoxy blends (diglycidyl ether of bisphenol-A (DGEBA)/cycloaliphatic epoxide resin/epoxy novolac resin) to develop a thermal curable bio-based epoxy system. The thermal behaviors of the EPO, epoxy blends (EB), and bio-based epoxy blends (EB/EPO) were characterized using differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMT) and thermo-mechanical analysis (TM). The glass transition temperature (T g) and storage modulus (E′) of the EB/EPO system was reduced with the increasing of the EPO loading. This is attributed to the plasticizing effect of the EPO. It was found that epoxy blends with higher loading of EPO possessed higher coefficient of thermal expansion (CTE) and tanδ value. This is due to the increase of the free volume and chain flexibility in the three-dimensional network of the epoxy blends. The internal thermal stresses of the EB/EPO were decreased as the increasing loading of EPO, owing to the reduction of crosslink density, modulus of elasticity, and T g in the epoxy blends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Masahiro F, Shigeo H. Composites technologies for 2020. In: Ye L, Mai YW, Su L, editors. Proceedings of the Fourth Asian–Australasian Conference on Composite Materials (ACCM-4). Cambridge, UK: Woodhead Publishing; 2004. p. 57–61.

    Google Scholar 

  2. Liu YF, Zhang C, Du ZJ, Li HQ. Preparation and curing kinetics of bisphenol-A type novolac epoxy resins. J Appl Polym Sci. 2006;99:858–68.

    Article  CAS  Google Scholar 

  3. Hiroaki M, Robert JJ, Amar KM, Manjusri M, Lawrence TD. Biobased epoxy/clay nanocomposites as a new matrix for CFRP. Compos A. 2006;37:54–62.

    Google Scholar 

  4. Mohamed AS, Shanmugam N, Muthukaruppan A. Synthesis and characterization of bismaleimide-modified, soy-based epoxy matrices for flame retardant applications. High Perform Polym. 2009; doi:10.1177/0954008308101724.

  5. Jin FL, Park SJ. Thermal and rheological properties of vegetable oil-based epoxy resins cured with thermal latent initiator. J Ind Eng Chem. 2007;13(5):808–14.

    CAS  Google Scholar 

  6. Mikhail RL, Richard EF, Richard AG, Stephen PM. Plastic-racing into the future. In: Kosbar LL, Gelorme J, editors. ANTEC ‘96 Conference Proceedings. Boca Raton, USA: CRC Press; 1996. p. 1387–98.

    Google Scholar 

  7. Blaine EB. Transmaterials 2: a catalog of materials that redefine our physical environment. New York: Princeton Architectural Press; 2008.

    Google Scholar 

  8. Rosli WD, Kumar RN, Mek Zah S, Hilmi MM. UV radiation curing of epoxidized palm-oil-cycloaliphatic diepoxide system induced by cationic photoinitiator for surface coating. Eur Polym J. 2003;39:593–600.

    Article  Google Scholar 

  9. Meyer PP, Niwat T, Salamah M, Sasitorn S, Wannapit J, Chakrit T. Epoxidation of soybean oil and jatropha oil. Thammasat Int J Sci Technol. 2008;13:1–5.

    Google Scholar 

  10. Stepanski ML, Glukhan EN, Torubarov AL. New technology for production of epoxidized vegetable oils. Russia: Shosse Entusiastiv; 2005.

    Google Scholar 

  11. Clayton AM. Epoxy resins: chemistry and technology. Boca Raton, USA: CRC Press; 1988.

    Google Scholar 

  12. Chandrashekhara K, Sundararaman S, Flanigan V, Kapila S. Affordable composites using renewable materials. Mater Sci Eng A. 2005;412:2–6.

    Article  Google Scholar 

  13. Van DVHAM, Mkamilo GS. Cereals and pulses (Plant Resources of Tropical Africa 1). Africa: PROTA; 2006.

    Google Scholar 

  14. Park SJ, Jin FL, Lee JR. Thermal and mechanical properties of tetrafunctional epoxy resin toughened with epoxidized soybean oil. Mater Sci Eng A. 2004;364:109–14.

    Article  Google Scholar 

  15. Amar KM, Manjusri M, Lawrence TD. Natural fibers, biopolymes and biocomposites. Boca Raton, USA: CRC Press; 2005.

    Google Scholar 

  16. Jin FL, Park SJ. Fracture toughness of difunctional epoxy resin/thermal latent initiator system modified with polyesters. J Ind Eng Chem. 2008;14:564–7.

    CAS  Google Scholar 

  17. Michelle M. Polymers in cementitious materials. Shropshire, UK: Rapra Technology; 2005.

    Google Scholar 

  18. Laura LK, Jeffrey G. Plastic-racing into the future. In: Kosbar LL, Gelorme J, editors. ANTEC ‘96 Conference Proceedings. Boca Raton, USA: CRC Press; 1996. p. 1378–81.

    Google Scholar 

  19. Bloch DR. Organic chemistry demystified. New York, USA: McGraw-Hill Professional; 2006.

    Google Scholar 

  20. Laurence MH, Christopher JM, Jonathan MP. Experimental organic chemistry: standard and microscale. Oxford: Blackwell; 1999.

    Google Scholar 

  21. Nicholas PC, Paul NC. Handbook of applied polymer processing technology. Boca Raton, USA: CRC Press; 1996.

    Google Scholar 

  22. Wellen R, Rabello M. The kinetics of isothermal cold crystallization and tensile properties of poly(ethylene terephthalate). J Mater Sci. 2005;40:6099–104.

    Article  CAS  Google Scholar 

  23. Michael EB, Patrick KG. Handbook of thermal analysis and calorimetry: recent advances, techniques and applications. New York, USA: Elsevier; 2007.

    Google Scholar 

  24. Cowie JMG. Polymers: chemistry and physics of modern materials. London, UK: Billing & Sons; 1973.

    Google Scholar 

  25. Xu YX, Hanna MA, Josiah SJ. Hybrid hazelnut oil characteristics and its potential oleochemical application. Ind Crops Prod. 2007;26:69–76.

    Article  CAS  Google Scholar 

  26. Mastura R. Protective clothing systems and materials. Boca Raton, USA: CRC Press; 1994.

    Google Scholar 

  27. Gunstone FD, Fred BP. Lipid technologies and applications. Boca Raton, USA: CRC Press; 1997.

    Google Scholar 

  28. Robert OE. Polymer science and technology. Boca Raton, USA: CRC Press; 2000.

    Google Scholar 

  29. Brydson JA. Plastics materials. Oxford, UK: Butterworth-Heinemann; 1999.

    Google Scholar 

  30. Arcady VD, Hu XZ, Emad S. Structural integrity and fracture. London, UK: Taylor & Francis; 2002.

    Google Scholar 

  31. Jue L, Wool R. Additives toughening effects on new bio-based thermosetting resins from plant oil. Compos Sci Technol. 2008;68:1025–33.

    Article  Google Scholar 

  32. Erfan SAR, Kamarshah A, Kooi CC, Hazizan MA. Preparation and properties of POSS/epoxy composites for electronic packaging application. Mater Des. 2009;30:1–8.

    Google Scholar 

  33. John TL, Richard FG. Polymer modifiers and additives. Boca Raton, USA: CRC Press; 2000.

    Google Scholar 

  34. Stoyko F, Debes B. Engineering biopolymers: homopolymers, blends and composites. Germany: Hanser; 2007.

    Google Scholar 

  35. Annelise EG, Cesar LP, Ana POC. Dynamic mechanical and thermal behavior of epoxy resins based on soybean oil. J Am Oil Chem Soc. 2002;79(8):797–802.

    Article  Google Scholar 

  36. Morita Y. Cationic polymerization of hydrogenated bisphenol-A glycidyl ether with cycloaliphatic epoxy resin and its thermal discolouration. J Appl Polym Sci. 2005;97:1395–400.

    Article  CAS  Google Scholar 

  37. Boey FYC, Chia NK, Rath SK, Abadie MJM. Low energy electron beam-induced cationic polymerization with onium salts. J Appl Polym Sci. 2001;82:3099–108.

    Article  CAS  Google Scholar 

  38. Bo L, Yang LT, Dai HH, Yi AH. Kinetic studies on oxirane cleavage of epoxidized soybean oil by methanol and characterization of polyols. J Am Oil Chem Soc. 2008;85:113–7.

    Article  Google Scholar 

  39. Garima T, Deepak S. Studies on the physico-mechanical and thermal characteristics of blends of DGEBA epoxy, 3, 4-epoxy cyclohexylmethyl, 3′, 4′-epoxycyclohexane carboxylate and carboxyl terminated butadiene co-acrylonitrile (CTBN). Mater Sci Eng A. 2008;496:483–93.

    Article  Google Scholar 

  40. Callister WD. Materials science and engineering: an introduction. 6th ed. New York, USA: Wiley; 2003.

    Google Scholar 

  41. Brahateeswaran C, Gupta VB. Internal stress in a cured epoxy resin system. Polymer. 1991;34(2):289–94.

    Article  Google Scholar 

  42. Socrates PP, Zeno WW, Frank NJ, Douglas AW. Organic coatings: science and technology. New York, USA: Wiley-Interscience; 2007.

    Google Scholar 

  43. Hans AK, Lenz J, Herman FM. Fiber technology: from film to fiber. Boca Raton, USA: CRC Press; 1984.

    Google Scholar 

  44. Gramham C, John H, Michael EA. Pharmaceutical coating technology. New York, USA: Informa Health Care; 1995.

    Google Scholar 

  45. Ricardo AO, Diana PL, Maria LGC, Julio CRV, James VC. A kinetic study of the accelerated effect of substituted benzyl alcohols on the cationic photopolymerization rate of epoxidized natural oil. Polymers. 2005;46:1535–41.

    Article  Google Scholar 

  46. Clyde FC. Printed circuits handbook. New York, USA: McGraw-Hill Professional; 2007.

    Google Scholar 

  47. Mafi R, Mirabedini SM, Naderi R, Attar MM. Effect of curing characterization on the corrosion performance of polyester and polyester/epoxy powder coatings. Corros Sci. 2008;50:3280–6.

    Article  CAS  Google Scholar 

  48. John S. Compositional and failure analysis of polymers: a practical approach. New York, USA: Wiley Default; 2000.

    Google Scholar 

  49. Chartoff RP, Weisman PT, Sircar A. The application of dynamic mechanical methods to tg determination in polymers: an overview. Indianapolis, USA: ASTM International; 1994.

    Google Scholar 

  50. Witold B, Rachel C, Ioannis MK, Aglaia VD. Prediction of glass transition temperature: binary blends and copolymers. Mater Lett. 2008;62:3152–5.

    Article  Google Scholar 

  51. Jean-Pierra P, Jacques V, Roberto JJ. Thermosetting polymers. Monticello, USA: Marcel Dekker, Inc; 2002.

    Google Scholar 

Download references

Acknowledgements

The authors would like to express their appreciation to Universiti Sains Malaysia for the research grant and Cape Technology Sdn Bhd for their technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. S. Chow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, S.G., Chow, W.S. Thermal properties of anhydride-cured bio-based epoxy blends. J Therm Anal Calorim 101, 1051–1058 (2010). https://doi.org/10.1007/s10973-010-0751-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-0751-7

Keywords

Navigation