Skip to main content
Log in

Improvement of thermal conductivity of poly(dimethyl siloxane) using silica-coated multi-walled carbon nanotube

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In order to enhance the thermal conductivity of MWCNT filled poly(dimethyl siloxane) (PDMS) composites, the MWCNT was coated with silica layer by three step reactions. The composites filled with raw and silica-coated MWCNTs were prepared and the properties were investigated in terms of the curing characteristics, mechanical properties, and thermal conductivity. Due to the poor compatibility between raw MWCNT and PDMS, raw MWCNT showed poor dispersion uniformity and wettability in PDMS. On the other hand, due to the chemical affinity between silica/MWCNT and PDMS throughout the hydrogen bonding, the silica-coated MWCNT filled PDMS showed improved mechanical properties in terms of tensile strength and 100% modulus, and good interfacial compatibility than raw MWCNT incorporated PDMS. Finally, the good wettability of silica/MWCNT in PDMS resulted in higher thermal conductivity caused from the facile phonon movement at the interface even with the smaller MWCNT contents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kuchibhatla SVNT, Karakoti AS, Bera D, Seal S. One dimensional nanostructured materials. Prog Mater Sci. 2007;52:699–913.

    Article  CAS  Google Scholar 

  2. Xie XL, Mai YX, Zhou SP. Dispersion and alignment of carbon nanotubes in polymer matrix: a review. Mater Sci Eng R. 2005;49:89–112.

    Article  Google Scholar 

  3. Ramasubramaniam R, Chen J, Liu H. Homogeneous carbon nanotube/polymer composites for electrical applications. Appl Phys Lett. 2003;83:2928–30.

    Article  CAS  Google Scholar 

  4. Parekh BB, Fanchini G, Eda G, Chhowalla M. Improved conductivity of transparent single-wall carbon nanotube thin films via stable postdeposition functionalization. Appl Phys Lett. 2007;90:121913.

    Article  Google Scholar 

  5. Viswanath R, Wakharkar V, Watwe A, Lebonheur V. Thermal performance challenges from silicon to systems. Intel Technol J. 2000;4:1–16.

    Google Scholar 

  6. Bonnet P, Sireude D, Garnier B, Chauvet O. Thermal properties and percolation in carbon nanotube–polymer composites. Appl Phys Lett. 2007;91:201910.

    Article  Google Scholar 

  7. Lu C, Mai YW. Anomalous electrical conductivity and percolation in carbon nanotube composites. J Mater Sci. 2008;43:6012–5.

    Article  CAS  Google Scholar 

  8. Xu Y, Leong CK, Chung DDL. Carbon nanotube thermal pastes for improving thermal contacts. J Electron Mater. 2007;36:1181–7.

    Article  CAS  Google Scholar 

  9. Biercuk MJ, Llaguno MC, Radosavljevic M, Hyun JK, Johnson AT. Carbon nanotube composites for thermal management. Appl Phys Lett. 2002;80:2767–9.

    Article  CAS  Google Scholar 

  10. Bryning MB, Milkie DE, Islam MF, Kikkawa M, Yodh AG. Thermal conductivity and interfacial resistance in single-wall carbon nanotube epoxy composites. Appl Phys Lett. 2005;87:161909.

    Article  Google Scholar 

  11. Jessica AH, King JA. Thermally conductive carbon filled nylon 6,6. Polym Compos. 2004;25:186–93.

    Article  Google Scholar 

  12. Haggenmueller R, Guthy C, Lukes JR, Fischer JE, Winey KI. Single wall carbon nanotube/polyethylene nanocomposites: thermal and electrical conductivity. Macromolecules. 2007;40:2417–21.

    Article  CAS  Google Scholar 

  13. Wong CP, Bollampally RS. Thermal conductivity, elastic modulus, and coefficient of thermal expansion of polymer composites filled with ceramic particles for electronic packaging. J Appl Polym Sci. 1999;74:3396–403.

    Article  CAS  Google Scholar 

  14. Prasher R. Thermal interface materials: historical perspective, status, and future directions. Proc IEEE. 2006;94:1571–86.

    Article  CAS  Google Scholar 

  15. Chung DDL. Materials for thermal conduction. Appl Therm Eng. 2001;21:1593–605.

    Article  CAS  Google Scholar 

  16. Liu CH, Huang H, Wu Y, Fan SS. Appl Phys Lett. 2004;84:4248–50.

    Article  CAS  Google Scholar 

  17. Mu Q, Feng S, Diao G. Thermal conductivity of silicone rubber filled with ZnO. Polym Compos. 2007;28:125–30.

    Article  CAS  Google Scholar 

  18. Yilgor I, Yilgor E. Thermal stabilities of end groups in hydroxyalkyl-terminated polydimethylsiloxane oligomers. Polym Bull. 1998;40:525–32.

    Article  CAS  Google Scholar 

  19. Wen J, Mark JE, Fitzgerald JJ. Unimodal, bimodal, and filled poly(dimethylsiloxane) elastomers under cyclic stress at elevated temperatures. J Macromol Sci A. 1994;A31:429–38.

    CAS  Google Scholar 

  20. Shim SE, Isayev AI. Ultrasonic devulcanization of precipitated silica-filled silicone rubber. Rubber Chem Technol. 2001;74:303–16.

    Article  CAS  Google Scholar 

  21. Kim M, Hong J, Hong CK, Shim SE. Preparation of silica-layered multi-walled carbon nanotubes activated by grafting of poly(4-vinylpyridine). Synth Met. 2009;159:62–8.

    Article  CAS  Google Scholar 

  22. Kim M, Hong J, Lee J, Hong CK, Shim SE. Fabrication of silica nanotubes using silica coated multi-walled carbon nanotubes as the template. J Colloid Interface Sci. 2008;322:321–6.

    Article  CAS  Google Scholar 

  23. Tritt TM. Thermal conductivity: theory, properties and applications. New York: Springer science; 2003.

    Google Scholar 

  24. Hong J, Lee J, Hong CK, Shim SE. Effect of dispersion state of carbon nanotube on the thermal conductivity of poly(dimethyl siloxane) composites. Curr Appl Phys. 2009;10:359–63.

    Article  Google Scholar 

  25. Babooram K, Narain R. Fabrication of SWNT/silica composites by the sol-gel process. ACS Appl Mater Interfaces. 2009;1:181–6.

    Article  CAS  Google Scholar 

  26. Moniruzzaman M, Winey KI. Polymer nanocomposites containing carbon nanotubes. Macromolecules. 2006;39:5194–205.

    Article  CAS  Google Scholar 

  27. Cataldo F, Ursini O, Angelini G. MWCNTs elastomer nanocomposite, Part 1: the addition of MWCNTs to a natural rubber-based carbon black-filled rubber compound. Fuller Nanotub Carbon Nanostructures. 2009;17:38–54.

    Article  CAS  Google Scholar 

  28. Zeng JL, Cao Z, Yang DW, Xu F, Sun LX, Zhang XF, et al. Effects of MWNTs on phase change enthalpy and thermal conductivity of a solid-liquid organic PCM. J Therm Anal Calorim. 2009;95:507–12.

    Article  CAS  Google Scholar 

  29. Nan CW, Liu G, Lin Y, Li M. Interface effect on thermal conductivity of carbon nanotube composites. Appl Phys Lett. 2004;85:3549–51.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Korea Research Foundation (grant no.: KRF-2007-331-D00118).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Eun Shim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, J., Lee, J., Hong, C.K. et al. Improvement of thermal conductivity of poly(dimethyl siloxane) using silica-coated multi-walled carbon nanotube. J Therm Anal Calorim 101, 297–302 (2010). https://doi.org/10.1007/s10973-009-0664-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0664-5

Keywords

Navigation