Skip to main content
Log in

Pyrolysis mechanism of urazole by evolved gas analysis

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In order to obtain a better understanding of the pyrolysis mechanism of urazole, molecular orbital (MO) calculations and evolved gas analysis were carried out. The MO calculations were performed using the density functional method (B3LYP) at the 6-311++G(d,p) levels by Gaussian 03. The geometrical structure of urazole and its tautomers were examined theoretically. Identification and real-time analysis of the gases evolved from urazole were carried out with thermogravimetry-infrared spectroscopy (TG-IR) and thermogravimetry-mass spectrometry (TG-MS). The evolved gases were identified as HNCO, N2, NH3, CO2, and N2O at 400 °C, but were different at other temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sinditskii VP, Smirnov SP, Egorshev VY. Thermal decomposition of NTO: an explanation of the high activation energy. Propell Explos Pyrotech. 2007;32:277–87.

    Article  CAS  Google Scholar 

  2. Thangadurai S, Karatha KPS, Sharma DR, Shukla SK. Review of some newly synthesized high energetic materials. Sci Tech Energ Mater. 2004;65:215–26.

    CAS  Google Scholar 

  3. Hara Y, Taniguchi H, Ikeda Y, Takayama S, Nakamura H. The thermal decomposition and hazards evaluation for 3-nitro-1, 2, 4-triazol-5-one. Sci Tech Energ Mater. 1994;55:183–7.

    CAS  Google Scholar 

  4. Rothgery EF, Audette DE, Wedlich RC, Csejka DA. Preparation, crystal structure, thermal decomposition mechanism, and thermodynamical properties of H[Pr(NTO)4(H2O)42H2O. Thermochim Acta. 1991;185:19–25.

    Article  Google Scholar 

  5. Badea M, Olar R, Marinescu D, Basile G. Thermal behavior of some new triazole derivative complexes. J Therm Anal Calorim. 2008;92:209–14.

    Article  CAS  Google Scholar 

  6. Li N, Chen SP, Gao SL. Crystal structure and thermal analysis of diaquadi (1, 2, 4-triazol-5-one)zinc(II) ion nitrate. J Therm Anal Calorim. 2007;89:583–8.

    Article  CAS  Google Scholar 

  7. Arai M, Tsukahara T, Ueda Y, Ichikawa K, Tamura M. Proceedings of 23th international pyrotechnics seminar, Tsukuba, September 30–October 4, 1997, p. 53–63.

  8. Arai M, Tsukahara T, Tamura M. Proceedings of 26th international pyrotechnics seminar, Nanjing, October 1–4, 1999, p. 7–14.

  9. Fischer G, Geith J, Klapotke TM, Krumm B. Synthesis, properties and dimerization study of isocyanic acid. Z Naturforschung. 2002;57b:19–24.

    Google Scholar 

  10. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR et al. Gaussian 03 revision E 01. Wallingford CT: Gaussian Inc.; 2004.

  11. Jensen JO. Vibrational frequencies and structural determinations of urazole. Spectrochim Acta A. 2003;59:637–50.

    Article  Google Scholar 

  12. Gordon PG, Audrieth LF. Hydrazine derivatives of the carbonic and thiocarbonic acids. VI. A new synthesis of urazole. J Org Chem. 1955;20:603–5.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoru Yoshino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshino, S., Miyake, A. Pyrolysis mechanism of urazole by evolved gas analysis. J Therm Anal Calorim 99, 145–148 (2010). https://doi.org/10.1007/s10973-009-0571-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0571-9

Keywords

Navigation