Skip to main content
Log in

Thermal analysis of prednicarbate and characterization of thermal decomposition product

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In the present work, the thermal behavior of prednicarbate was studied using DSC and TG/DTG. The solid product remaining at the first decomposition step of the drug was isolated by TG, in air and N2 atmospheres and was characterized using LC-MS/MS, NMR, and IR spectroscopy. It was found that the product at the first thermal decomposition step of prednicarbate corresponds to the elimination of the carbonate group bonding to C17, and a consequent formation of double bond between C17 and C16. Structure elucidation of this degradation product by spectral data has been discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lange K, Gysler A, Bader M, Kleuser B, Korting HC, Schafer-Korting M. Prednicarbate versus conventional topical glucocorticoids: pharmacodynamic characterization in vitro. Pharm Res. 1997;14:1744–9.

    Article  CAS  Google Scholar 

  2. Gysler A, Kleuser B, Sippl W. Skin penetration and metabolism of topical glucocorticoids in reconstructed epidermis and in excised human skin. Pharm Res. 1999;16:1386–91.

    Article  CAS  Google Scholar 

  3. Lange K, Kleuser B, Gysler A. Cutaneous inflammation and proliferation in vitro differential effects and mode of action of topical glucocorticoids. Skin Pharmacol Phys. 2000;13:93–103.

    Article  CAS  Google Scholar 

  4. Almawi WY, Tamim H. Posttranscriptional mechanisms of glucocorticoid antiproliferative effects: glucocorticoids inhibit IL-6-induced proliferation of B9 hybridoma cells. Cell Transplant. 2001;10:161–4.

    CAS  Google Scholar 

  5. Krakowski AC, Eichenfield LF, Dohil MA. Management of atopic dermatitis in the pediatric population. Pediatrics. 2008;122(4):812–24.

    Article  Google Scholar 

  6. Leung AKC, Barber KAB. Managing childhood atopic dematitis. Adv Ther. 2003;20(3):129–37.

    Article  Google Scholar 

  7. Wendlandt WW. Thermal analysis. 3rd ed. New York: Wiley; 1986.

    Google Scholar 

  8. Araújo AAS, Storpirtis S, Mercuri L, Carvalho FMS, Santos Filho M, Matos JR. Thermal analysis of the antiretroviral zidovudine (AZT) and evaluation of the compatibility with excipients used in solid dosage forms. Int J Pharm. 2003;206:303–14.

    Article  Google Scholar 

  9. Cides da Silva LC, Araújo AAS, Santos-Filho M, Matos JR. Thermal behaviour, compatibility study and decomposition kinetics of glimepiride under isothermal and non-isothermal conditions. J Therm Anal Calorim. 2006;84:441–5.

    Article  Google Scholar 

  10. Rezende RLO, Santoro MIRM, Matos JR. Stability and compatibility study on enalapril maleate using thermoanalytical techniques. J Therm Anal Calorim. 2008;93(3):881–6.

    Article  CAS  Google Scholar 

  11. Felix FS, Cides da Silva LC, Angnes L, Matos JR. Thermal behavior study and decomposition kinetics of salbutamol under isothermal and non-isothermal conditions. J Therm Anal Calorim. 2009;95(3):877–80.

    Article  CAS  Google Scholar 

  12. Giron D. Applications of thermal analysis and coupled techniques in pharmaceutical industry. J Therm Anal Calorim. 2002;68:335–57.

    Article  CAS  Google Scholar 

  13. Stulzer HK, Rodrugues PO, Cardoso TM, Matos JR, Silva MAS. Compatibility studies between captopril and pharmaceutical excipients used in tablets formulations. J Therm Anal Calorim. 2008;91(1):323–8.

    Article  CAS  Google Scholar 

  14. Birzescu M, Niculescu M, Dumitru R, Budrugeac P, Segal E. Copper(II) oxalate obtained through the reaction of 1,2-ethanediol with Cu(NO3) .2 3H2O. Structural investigations and thermal analysis. J Therm Anal Calorim. 2008;94(1):297–303.

    Article  CAS  Google Scholar 

  15. Zhang W, Luo Y, Li J, Li X. Thermal decomposition of aminonitrobenzodifuroxan. Propellants Explos Pyrotech. 2008;33(3):177–81.

    Article  CAS  Google Scholar 

  16. Migdal-Mikuli A, Górska N, Szostak E. Phase transition and thermal decomposition of [Al(DMSO)6]Cl3. J Therm Anal Calorim. 2007;90(1):223–8.

    Article  CAS  Google Scholar 

  17. Lizarraga E, Zabaleta C, Palop JA. Thermal stability and decomposition of pharmaceutical compounds. J Therm Anal Calorim. 2007;89(3):783–92.

    Article  CAS  Google Scholar 

  18. Rachwal S, Pop E, Brewster ME. Structural studies of loteprednol etabonate and other analogs of prednisolone using NMR techniques. Steroids. 1996;61:524–30.

    Article  CAS  Google Scholar 

  19. Martini S, Bonechi C, Casolaro M, Corbini G, Rossi C. Drug-protein recognition processes investigated by NMR relaxation data. A study on corticosteroid–albumin interactions. Biochem Pharmacol. 2006;71:858–64.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge to Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), and Stiefel Laboratories for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jivaldo Rosário Matos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salvio Neto, H., Barros, F.A.P., de Sousa Carvalho, F.M. et al. Thermal analysis of prednicarbate and characterization of thermal decomposition product. J Therm Anal Calorim 102, 277–283 (2010). https://doi.org/10.1007/s10973-009-0419-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0419-3

Keywords

Navigation