Skip to main content
Log in

Isothermal crystallization kinetics of fly ash filled iso-polypropylene composite- and a new physical approach

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Composites of pre-mixed fly ash (FA) and isotactic-polypropylene (PP) with varying degree of FA, 0, 20, 45 and 60 wt% were prepared by injection moulding at 483 K. The isothermal crystallization kinetics of the neat PP and composites are calculated using exotherms obtained from differential scanning calorimetry (DSC) at different isothermal crystallization temperatures (T c) 403, 405 and 407 K. The lowest points of the exotherm peaks were shifted to higher crystallization times in the ranges of 0.75–1.50 min with the increasing of T c in neat PP and composites regardless of FA percentage addition. The values of Avrami exponent n are found as non-integral number ranges 2 < n < 4, and the calculated initial crystal thickness values of PP change slightly with increasing super cooling temperature as well as FA content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Li JX, Cheung WL. A correction function to determine the β-fusion heat in a mixture of α and β-PP. J Therm Anal Calorim. 2000;61:757–62.

    Article  CAS  Google Scholar 

  2. Lotz B, Wittmann JC, Lovinger JA. Structure and morphology of poly(propylenes): a molecular analysis. Polymer. 1996;37(22):4979–92.

    Article  CAS  Google Scholar 

  3. Giammelis EP. Polymer layered silicate nanocomposites. Adv Mater. 1996;8(1):29–35.

    Article  Google Scholar 

  4. Messersmith PB, Giannelis EP. Synthesis and barrier properties of poly(ecapro1actone)-layered silicate nanocomposites. J Polym Sci Part A: Polym Chem. 1995;33:1047–57.

    Article  CAS  Google Scholar 

  5. Okamoto M, Nam PH, Maiti P, Kotaka T, Hasegawa N, Usuki A. A house of cards structure in polypropylene/clay nanocomposites under elongation flow. Nano Lett. 2001;1(6):295–8.

    Article  CAS  Google Scholar 

  6. Usuki A, Kawasumi T, Fukushima Y, Okada A. Mechanical properties of nylon 6-clay hybrid. J Mater Res. 1993;8:1179–82.

    Article  CAS  Google Scholar 

  7. Srinivas S, Basu JR, Riffle JS, Wilkes GL. Kinetics of isothermal and nonisothermal crystallization of novel poly(ary1ene ether ether sulfide)s. Polym Eng Sci. 1997;37(3):497–510.

    Article  CAS  Google Scholar 

  8. Xie XL, Li RKY, Tjong SC, Mai YW. Structural properties and mechanical behaviour of injection molded composites of polypropylene and sisal fiber. Polym Compos. 2002;23(3):319–328.

    Article  CAS  Google Scholar 

  9. Acosta JL, Ojeda MC, Morales E, Linares A. Morphological, structural, and interfacial changes produced in composites on the basis of polypropylene and surface-treated sepiolite with organic acids. 111. isothermal and nonisothermal crystallization. J Appl Polym Sci. 1986;32:4119–26.

    Article  CAS  Google Scholar 

  10. Gaceva GB, Janevsky A, Mader E. Nucleation activity of glass fibers toward iPP evaluated by DSC and polarizing light microscopy. Polymer. 2001;42:4409–16.

    Article  Google Scholar 

  11. Zhang QX, Yu ZZ, Xie XL, Mai YW. Crystallization and impact energy of polypropylene/CaCO3 nanocomposites with non-ionic modifier. Polymer. 2004;45:5985–94.

    Article  CAS  Google Scholar 

  12. Jancar J, Kucera J. Yield behavior of PP/CaCO3 and PP/Mg(OH)2 composites. II: enhanced interfacial adhesion. Polym Eng Sci. 1990;30:714–20.

    Article  CAS  Google Scholar 

  13. Ferrage E, Martin F, Boudet A, Petit S, Fourty G, Jouffet F, et al. Talc nucleating agent in polypropylene: morphology induced by lamellar particles addition and interface miner-matrix modelization. J Mater Sci. 2002;37:1561–73.

    Article  CAS  Google Scholar 

  14. Chen J, Li X, Wu C. Crystallization behaviour of polypropylene filled with modified carbon black. Polym J. 2007;39(7):722–30.

    Article  CAS  Google Scholar 

  15. Kim B, Lee SH, Lee D, Ha B, Park J, Char K. Crystallization kinetics maleated polypropylene/clay hybrids. Ind Eng Chem Res. 2004;43:6082–9.

    Article  CAS  Google Scholar 

  16. Mucha M, Krolikowski Z. Application of DSC to study characterization kinetics of polypropylene containing fillers. J Therm Anal Calorim. 2003;74:549–57.

    Article  CAS  Google Scholar 

  17. Tang JG, Wang Y, Liu YH, Belfiore LA. Effects of organic nucleating agents and zinc oxide nanoparticles on isotactic polypropylene crystallization. Polymer. 2004;45:2081–91.

    Article  CAS  Google Scholar 

  18. Valentini L, Biagiotti J, Kenny JM, Santucci S. Effects of single-walled carbon nanotubes on the crystallization behaviour of polypropylene. J Appl Polym Sci. 2003;87:708–13.

    Article  CAS  Google Scholar 

  19. Papageorgiou GZ, Achilias DS, Bikiaris DN, Karayanndis GP. Crystallization kinetics and nucleation activity of filler in polypropylene/surface-treated SiO2 nanocomposites. Thermochim Acta. 2005;427:117–128.

    Article  CAS  Google Scholar 

  20. Rong MZ, Zhang MQ, Pan SL, Lehmann B, Friedrich K. Analysis of the interfacial interactions in polypropylene/silica nanocomposites. Polym Int. 2004;53:176–83.

    Article  CAS  Google Scholar 

  21. Gupta N, Brar BS, Woldesenbet E. Effects of filler addition on the compressive and impact properties of glass fibre reinforced epoxy. Bull Mater Sci. 2001;24(2):219–23.

    Article  CAS  Google Scholar 

  22. Guhanathan S, Sarojadevi M. Studies on interface in polystyrene/fly ash particulate composites. Compos Interface. 2000;11(1):43–66.

    Article  Google Scholar 

  23. Wong KWY, Truss RW. Effect of fly ash content and coupling agent on the mechanical properties of fly ash-filled polypropylene. Compos Sci Technol. 1994;52:361–8.

    Article  CAS  Google Scholar 

  24. Wang M, Shen Z, Cai C, Ma S, Xing Y. Experimental investigations of polypropylene and polyvinyl chloride composites filled with plerospheres. J Appl Polym Sci. 2004;92:126–31.

    Article  CAS  Google Scholar 

  25. Jarvela PA, Jarvela PK. Multicomponent compounding of polypropylene. J Mater Sci. 1996;31:3853–60.

    Article  CAS  Google Scholar 

  26. Huang X, Hwang JY, Gillis JM. Processed low NOx fly ash as filler in plastics. J Min Mater Charact Eng. 2003;2(1):11–31.

    Google Scholar 

  27. Nath DCD, Bandyopadhyay S, Yu A, Blackburn D, White C. Novel observations on kinetics of non-isothermal crystallization in fly ash filled isotactic-polypropylene composites. J Appl Polym Sci. 2009; in press.

  28. Sun P, Wu CH. Transition from brittle to ductile behavior of fly ash using PVA fibers. Cem Concr Compos. 2008;30:29–36.

    Article  Google Scholar 

  29. Hidalgo A, García JL, Alonso MC, Fernández L, Andrade C. Microstructure development in mixes of calcium aluminate cement with fume or fly ash. J Therm Anal Calorim. 2009;96(2):335–45.

    Article  CAS  Google Scholar 

  30. Komljenovi M, Stojkanovi LP, Baarevi Z, Jovanovi N, Rosi A. Fly ash as the potential raw mixture component for Portland cement clinker synthesis. J Therm Anal Calorim. 2009;96(2):363–8.

    Article  Google Scholar 

  31. Rahhal V, Talero R. Fast physics-chemical characterization of fly ash. J Therm Anal Calorim. 2009;96(2):369–74.

    Article  CAS  Google Scholar 

  32. Stevens MP. Polymer chemistry: an introduction. 3rd ed. New York: Oxford University Press; 1999.

    Google Scholar 

  33. http://faculty.uscupstate.edu/llever/Polymer%20Resources/GlassTrans.htm. Accessed 1st July, 2009.

  34. Organ SJ, Ungar G, Keller A, Wills HH. Isothermal refolding in crystals of long alkanes in solution. 11. morphological changes accompanying thickening. J Polym Sci Part B: Polym Phys. 1990;28:2365–84.

    Article  CAS  Google Scholar 

  35. Barham PJ, Chivers RA, Keller A, Martinez-Salazar J. The supercooling dependence of the initial fold length of polyethylene crystallized from the melt: unification of melt and solution crystallization. J Mater Sci. 1985;20:1625–30.

    Article  CAS  Google Scholar 

  36. Litvinov VM, Steeman PAM. EPDM-carbon black interactions and the reinforcement mechanisms, as studied by low-resolution 1H NMR. Macromolecules. 1999;32:8476–90.

    Article  CAS  Google Scholar 

  37. Sridhar V, Xiu ZZ, Xu D, Lee SH, Kim JK, Kang DJ, et al. Fly ash reinforced thermoplastic vulcanizates obtained from waste tire powder. Waste Manag. 2009;29:1058–68.

    Article  CAS  Google Scholar 

  38. Lee SH, Balasubramanian M, Kim JK. Dynamic reaction inside co-rotating twin screw extruder. II. Waste ground rubber tire powder/polypropylene blends. J Appl Polym Sci. 2007;106:3209–19.

    Article  CAS  Google Scholar 

  39. Tan LS, Mchugh AJ. The role of particle size and polymer molecular weight in the formation and properties of an organo-ceramic composite. J Mater Sci. 1996;31:3701–6.

    Article  CAS  Google Scholar 

  40. Lorenzo AT, Arnal ML, Mueller AJ, Boschetti-de-Fierro A, Abetz V. Nucleation and isothermal crystallization of the polyethylene block within diblock copolymers containing polystyrene and poly(ethylene-alt-propylene). Macromolecules. 2007;40(14):5023–37.

    Article  CAS  Google Scholar 

  41. Xu W, Zhai H, Guo H, Whitely N, Pan WP. PE/ORG-MMT nanocomposites non-isothermal crystallization kinetics. J Therm Anal Calorim. 2004;78:102–12

    Article  CAS  Google Scholar 

  42. Aella M, Martuscelli E, Sellitti C, Garagnani E. Crystallization behaviour and mechanical properties of polypropylene-based composites. J Mater Sci. 1987;22:3185–93.

    Article  Google Scholar 

  43. Avrami MJ. Kinetics of Phase Change. III. Granulation, phase change, and microstructure. Chem Phys. 1941;9:177–84.

    CAS  Google Scholar 

  44. Grozdanov A, Burzarovska A, Bogoeva-Gaceva G, Avella M, Errico ME, Gentile G. Nonisothermal crystallization kinetics of kenaf fiber/polypropylene composites. Polym Eng Sci. 2007;5:745–9.

    Article  Google Scholar 

  45. KTH Fibre and Polymer Technol “Morphology of semicrystalline polymers” Chapter 6, P186. http://www.polymer.kth.se/forskarutbildning/doktorandkurser/Chapter%206-1.pdf http://www.polymer.kth.se/forskarutbildning/doktorandkurser/Chapter%206-3.pdf, Accessed 1 July 2009.

  46. Tjong SC, Li RK, Cheung T. Mechanical behavior of CaCO3 particulate-filled beta-crystalline phase polypropylene composites. Polym Eng Sci. 2007;37(1):166–72.

    Article  Google Scholar 

Download references

Acknowledgements

Dilip Chandra Deb Nath is grateful to ARC (Australian Research Council) for full financial support in the linkage program study (Project: ARC LP0669837).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sri Bandyopadhyay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nath, D.C.D., Bandyopadhyay, S., Yu, A. et al. Isothermal crystallization kinetics of fly ash filled iso-polypropylene composite- and a new physical approach. J Therm Anal Calorim 99, 423–429 (2010). https://doi.org/10.1007/s10973-009-0408-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0408-6

Keywords

Navigation