Skip to main content
Log in

The effect of surface modification of layer silicates on the thermoanalytical properties of poly(NIPAAm-co-AAm) based composite hydrogels

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

We studied the effect of variations in the composition of the 3D polymer matrix on the water adsorption properties of poly(N-isopropylacrylamide-co-acrylamide) [abbreviated as poly(NIPAAm-co-AAm)]-based gels containing fillers of diverse hydrophilicities (Na-montmorillonite and hydrophobized montmorillonite). The hydrophilicity of the polymer matrix was modified by varying the ratio of the initial monomers, since acrylamide (AAm) is hydrophilic, whereas N-isopropylacrylamide (NIPAAm) is relatively hydrophobic. Filler content was varied in the range of 1–25 wt%. The water content of polymers, fillers and composites, a parameter determined by their different hydrophilicities was characterized by gravimetry and/or thermoanalytical methods (TG, DSC). The water content of the samples was found to be controllable by varying the hydrophilicity of the polymer matrix and/or the amount and hydrophilicity of the fillers added. Swelling of the relatively hydrophobic poly(NIPAAm) can be increased by the addition of hydrophobic fillers, whereas that of the hydrophilic poly(AAm) can be enhanced by the addition of hydrophilic fillers. The effect of changes in composition on the desorption enthalpies of the samples was determined. The water content of the copolymer increases with increasing the ratio of the hydrophilic monomer, which is due to an increase in the so-called free water content. In the case of the hydrophobic poly(NIPAAm) it is primarily hydrophobic association interactions that dominate the interaction between the polymer matrix and the lamellae of the filler, whereas in the case of the hydrophilic poly(AAm) hydrophilic interactions are dominant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tian Q, Zhao XA, Tang XZ, Zhang YX. Fluorocarbon-containing hydrophobically modified poly(acrylic acid) gels: gel structure and water state. J Appl Polym Sci. 2003;89:1258–65.

    Article  CAS  Google Scholar 

  2. Shin BC, John MS, Lee HB, Yuk SH. pH/temperature dependent phase transition of an interpenetrating polymer network: anomalous swelling behavior above lower critical solution temperature. Eur Polym J. 1998;34:1675–8.

    Article  CAS  Google Scholar 

  3. Yin L, Fei L, Cui F, Tang C, Yin C. Superporous hydrogels containing poly(acrylic acid-co-acrylamide)/O-carboxymethyl chitosan interpenetrating polymer networks. Biomaterials. 2007;28:1258–66.

    Article  CAS  Google Scholar 

  4. Alexandre M, Dubois P. Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng. 2000;28:1–63.

    Article  Google Scholar 

  5. Ray SS, Bousmina M. Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world. Prog Mater Sci. 2005;50:962–79.

    Article  CAS  Google Scholar 

  6. Shibayama M, Suda J, Karino T, Okabe S, Takehisa T, Haraguchi K. Structure and dynamics of poly(N-isopropylacrylamide)-clay nanocomposite gels. Macromolecules. 2004;37:9606–12.

    Article  CAS  Google Scholar 

  7. Shibayama M, Karino T, Miyazaki S, Okabe S, Takehisa T, Haraguchi K. Small-angle neutron scattering study on uniaxially stretched poly(N-isopropylacrylamide)-clay nanocomposite gels. Macromolecules. 2005;38:10772–81.

    Article  CAS  Google Scholar 

  8. Haraguchi K, Li HJ, Matsuda K, Takehisa T, Elliott E. Mechanism of forming organic/inorganic network structures during in-situ free-radical polymerization in PNIPA-clay nanocomposite hydrogels. Macromolecules. 2005;38:3482–90.

    Article  CAS  Google Scholar 

  9. Haraguchi K, Li HJ. Mechanical properties and structure of polymer-clay nanocomposite gels with high clay content. Macromolecules. 2006;39:1898–905.

    Article  CAS  Google Scholar 

  10. Miyazaki S, Karino T, Endo H, Haraguchi K, Shibayama M. Clay concentration dependence of microstructure in deformed poly(N-isopropylacrylamide)-clay nanocomposite gels. Macromolecules. 2006;39:8112–20.

    Article  CAS  Google Scholar 

  11. Miyazaki S, Endo H, Karino T, Haraguchi K, Shibayama M. Gelation mechanism of poly(N-isopropylacrylamide)-clay nanocomposite gels. Macromolecules. 2007;40:4287–95.

    Article  CAS  Google Scholar 

  12. Haraguchi K, Li HJ, Okumura N. Hydrogels with hydrophobic surfaces: abnormally high contact angles for water on PNIPA nanocomposite hydrogels. Macromolecules. 2007;40:2299–302.

    Article  CAS  Google Scholar 

  13. Százdi L, Pukánszky B, Vancso GJ. Quantitative estimation of the reinforcing effect of layered silicates in PP nanocomposites. Polymer. 2006;47:4638–48.

    Article  Google Scholar 

  14. Varga Zs, Filipcsei G, Zrínyi M. Magnetic field sensitive functional elastomers with tuneable elastic modulus. Polymer. 2006;47:227–33.

    Article  CAS  Google Scholar 

  15. Mravcaková M, Omastová M, Olejníková K, Pukánszky B, Chehimi MM. The preparation and properties of sodium and organomodified-montmorillonite/polypyrrole composites: a comparative study. Synth Met. 2007;157:347–57.

    Article  Google Scholar 

  16. Guilherme MR, Campesea GM, Radovanovic E, Rubira AF, Tambourgi EB, Muniz EC. Thermo-responsive sandwiched-like membranes of IPN-PNIPAAm/PAAm hydrogels. J Memb Sci. 2006;275:187–94.

    Article  CAS  Google Scholar 

  17. Coughlan DC, Corrigan OI. Drug–polymer interactions and their effect on thermoresponsive poly(N-isopropylacrylamide) drug delivery systems. Int J Pharm. 2006;313:163–74.

    Article  CAS  Google Scholar 

  18. Kumar V, Chaudhari CV, Bhardwaj YK, Goel NK, Sabharwal S. Radiation induced synthesis and swelling characterization of thermo-responsive N-isopropylacrylamide-co-ionic hydrogels. Eur Polym J. 2006;42:235–46.

    Article  CAS  Google Scholar 

  19. Sierra-Martín B, Romero-Cano MS, Cosgrove T, Vincent B, Fernández-Barbero A. Solvent relaxation of swelling PNIPAM microgels by NMR. Colloid Surf A. 2005;270:296–300.

    Article  Google Scholar 

  20. Salles F, Beurroies I, Bildstein O, Jullien M, Raynal J, Denoyel R, et al. A calorimetric study of mesoscopic swelling and hydration sequence in solid Na-montmorillonite. Appl Clay Sci. 2008;39:186–201.

    Article  CAS  Google Scholar 

  21. Picard E, Gauthier H, Gérard J-F, Espuche E. Influence of the intercalated cations on the surface energy of montmorillonites: consequences for the morphology and gas barrier properties of polyethylene/montmorillonites nanocomposites. J Colloid Interface Sci. 2007;307:364–76.

    Article  CAS  Google Scholar 

  22. Garea SA, Iovu H, Bulearca A. New organophilic agents of montmorillonite used as reinforcing agent in epoxy nanocomposites. Polym Test. 2008;27:100–13.

    Article  CAS  Google Scholar 

  23. Aliouane N, Hammouche A, De Doncker RW, Telli L, Boutahala M, Brahimi B. Investigation of hydration and protonic conductivity of H-montmorillonite. Solid State Ionics. 2002;148:103–10.

    Article  CAS  Google Scholar 

  24. De Lisi R, Lazzara G, Milioto S, Muratore N. Laponite clay in homopolymer and tri-block copolymer matrices. J Therm Anal Calorim. 2007;87(1):61–7.

    Article  Google Scholar 

  25. Chen D, Zhu JX, Yuan P, Yang SJ, Chen T-H, He HP. Preparation and characterization of anion-cation surfactants modified montmorillonite. J Therm Anal Calorim. 2008;94:841–8.

    Article  CAS  Google Scholar 

  26. Xiang Y, Peng Z, Chen D. A new polymer/clay nano-composite hydrogel with improved response rate and tensile mechanical properties. Eur Polym J. 2006;42:2125–32.

    Article  CAS  Google Scholar 

  27. Marras SI, Kladi KP, Tsivintzelis I, Zuburtikudis I, Panayiotou C. Biodegradable polymer nanocomposites: the role of nanoclays on the thermomechanical characteristics and the electrospun fibrous structure. Acta Biomater. 2008;4:756–65.

    Article  Google Scholar 

  28. Yeh JM, Liou SJ, Chang YW. Polyacrylamide–clay nanocomposite materials prepared by photopolymerization with acrylamide as an intercalating agent. J Appl Polym Sci. 2004;91:3489–96.

    Article  CAS  Google Scholar 

  29. Wang YC, Fan SC, Lee KR, Li CL, Huanga SH, Tsai HA, et al. Polyamide/SDS–clay hybrid nanocomposite membrane application to water–ethanol mixture pervaporation separation. J Memb Sci. 2004;239:219–26.

    Article  CAS  Google Scholar 

  30. Adoor SG, Sairam M, Manjeshwar LS, Raju KVSN, Aminabhavi TM. Sodium montmorillonite clay loaded novel mixed matrix membranes of poly(vinyl alcohol) for pervaporation dehydration of aqueous mixtures of isopropanol and 1,4-dioxane. J Memb Sci. 2006;285:182–95.

    Article  CAS  Google Scholar 

  31. Toldy A, Tóth N, Anna P, Marosi G. Synthesis of phosphorus-based flame retardant systems and their use in an epoxy resin. Polym Degrad Stab. 2006;91:585–92.

    Article  CAS  Google Scholar 

  32. Matkó Sz, Toldy A, Keszei S, Anna P, Bertalan Gy, Marosi Gy. Flame retardancy of biodegradable polymers and biocomposites. Polym Degrad Stab. 2005;88:138–45.

    Article  Google Scholar 

  33. Zelkó R. Effect of poloxamer on the solubility coefficient of water and the enthalpy recovery of cast poly(vinylpyrrolidone) films. Polym Degrad Stab. 2005;87:355–59.

    Article  Google Scholar 

  34. Zelkó R, Süvegh K. Comparison of the enthalpy recovery and free volume of polyvinylpyrrolidone during anomalous glassy to rubbery transition. Eur J Pharm Sci. 2004;21:519–23.

    Article  Google Scholar 

  35. Stenekes RJH, Talsma H, Hennink WE. Formation of dextran hydrogels by crystallization. Biomaterials. 2001;22:189–98.

    Article  Google Scholar 

  36. Langmaier F, Mládek M, Mokrejs P, Kolomazník K. Biodegradable packing materials based on waste collagen hydrolisate cured with dialdehyde starch. J Therm Anal Calorim. 2008;93:547–52.

    Article  CAS  Google Scholar 

  37. de Moura MR, Aouada FA, Guilherme MR, Radovanovic E, Rubira AF, Muniz EC. Thermo-sensitive IPN hydrogels composed of PNIPAAm gels supported on alginate-Ca2+ with LCST tailored close to human body temperature. Polym Test. 2006;25:961–69.

    Article  Google Scholar 

  38. Kim SJ, Park SJ, Kim SI. Synthesis and characteristics of interpenetrating polymer network hydrogels composed of poly(vinyl alcohol) and poly(N-isopropylacrylamide). React Funct Polym. 2003;55:61–7.

    Article  CAS  Google Scholar 

  39. Maeda T, Yamamoto K, Aoyagi T. Importance of bound water in hydration–dehydration behavior of hydroxylated poly(N-isopropylacrylamide). J Colloid Interface Sci. 2006;302:467–74.

    Article  CAS  Google Scholar 

  40. Lin SY, Chen KS, Chu LR. Drying methods affecting the particle sizes, phase transition, deswelling/reswelling processes and morphology of poly(N-isopropylacrylamide) microgel beads. Polymer. 1999;40:6307–12.

    Article  CAS  Google Scholar 

  41. Li SK, D’Emanuele A. On–off transport through a thermoresponsive hydrogel composite membrane. J Control Release. 2001;75:55–67.

    Article  CAS  Google Scholar 

  42. Li SK, D’Emanuele A. Effect of thermal cycling on the properties of thermoresponsive poly(N-isopropylacrylamide) hydrogels. Int J Pharm. 2003;267:27–34.

    Article  CAS  Google Scholar 

  43. Liu W, Zhang B, Lu WW, Li X, Zhu D, Yao KD, et al. A rapid temperature-responsive sol–gel reversible Poly(N-isopropylacrylamide)-g-methylcellulose copolymer hydrogel. Biomaterials. 2004;25:3005–12.

    Article  CAS  Google Scholar 

  44. Szilágyi A, Zrínyi M. Temperature induced phase transition of interpenetrating polymer networks composed of poly(vinyl alcohol) and copolymers of N-isopropylacrylamide with acrylamide or 2-acrylamido-2 methylpropyl-sulfonic acid. Polymer. 2005;46:10011–6.

    Article  Google Scholar 

  45. László K, Kosik K, Geissler E. High-sensitivity isothermal and scanning microcalorimetry in PNIPA hydrogels around the volume phase transition. Macromolecules. 2004;37:10067–72.

    Article  Google Scholar 

  46. Kosik K, Wilk E, Geissler E, László K. Influence of a crown ether comonomer on the temperature induced phase transition of poly(N-isopropylacrylamide) hydrogels. J Phys Chem B. 2008;112:1065–70.

    Article  CAS  Google Scholar 

  47. Agrawal AM, Manek RV, Kolling WM, Neau ST. Studies on the interaction of water with ethylcellulose: effect of polymer particle size. Pharm Sci Technol. 2003;4:1–11.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Hungarian National Office of Research and Technology (NKTH) and the Agency for Research Fund Management and Research Exploitation (KPI) under contract no. RET-07/2005; and the Cooperation Research Centre (DEAK) of the University of Szeged (28/00/0R201).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imre Dékány.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janovák, L., Varga, J., Kemény, L. et al. The effect of surface modification of layer silicates on the thermoanalytical properties of poly(NIPAAm-co-AAm) based composite hydrogels. J Therm Anal Calorim 98, 485–493 (2009). https://doi.org/10.1007/s10973-009-0311-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0311-1

Keywords

Navigation