Skip to main content
Log in

Thermo-mechanical method for the determination of the fractal dimension of fat crystal networks

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The physical properties of a fat are determined by its thermal history, processing conditions, chemical composition, polymorphism and spatial distribution of mass. The mass fractal dimension of a fat crystal network can be determined from the slope of the log–log plot of the storage modulus (G′) versus the solid fat content (SFC). Different SFCs were obtained by melting the fat, diluting it to different extents in liquid oil, and crystallizing the blends under specific conditions. One of the major drawbacks of this method is the inability of characterizing the native structure of an already crystallized fat. In the thermo-mechanical method developed in this study, SFC is changed via temperature variations instead. At each temperature, the G′ and SFC were measured and the fractal dimension calculated as described above. The thermomechanical method proved to be a simpler and more reliable estimator of the fractal dimension of a fat crystal network than the dilution method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Narine SS, Marangoni AG. Relating structure of fat crystal networks to mechanical properties: a review. Food Res Int. 1999;32:227–48.

    Article  CAS  Google Scholar 

  2. Narine SS, Marangoni AG. Fractal nature of fat crystal networks. Phys Rev E. 1999;59:1908–20.

    Article  CAS  Google Scholar 

  3. Awad TS, Rogers MA, Marangoni AG. Scaling behavior of the elastic modulus in colloidal networks of fat crystals. J Phys Chem B. 2004;108:171–9.

    Article  CAS  Google Scholar 

  4. Heertje I. Microstructure studies in fat research Food Struct. 1993;12:77–94.

    CAS  Google Scholar 

  5. Juriaanse AC, Heertje I. Microstructure of shortenings, margarine and butter – a review. Food Microstruct. 1988;7:181–8.

    Google Scholar 

  6. Wright AJ, Scanlon MG, Hartel RW, Marangoni AG. Rheological properties of milk fat and butter. J Food Sci. 2001;66:1056–71.

    CAS  Google Scholar 

  7. Marangoni AG. The nature of fractality in fat crystal networks. Trends Food Sci Technol. 2002;13:37–47.

    Article  CAS  Google Scholar 

  8. Vreeker R, Hoekstra LL, den Boer DC, Agterof WGM. The fractal nature of fat crystal networks. Colloids Surf. 1992;65:185–9.

    Article  CAS  Google Scholar 

  9. Bremer LGB, Vliet VT, Walstra P. Theoretical and experimental study on the fractal nature of the structure of casein gels. J Chem Soc Faraday Trans. 1989;185:3359–72.

    Google Scholar 

  10. Shih WH, Shih WY, Kim SI, Liu J, Aksay IA. Scaling behavior of the elastic properties of colloidal gels. Phys Rev A. 1990;42:4772–9.

    Article  CAS  Google Scholar 

  11. Sonntag RC, Russel WB. Elastic properties of flocculated networks. J Colloid Interface Sci. 1987;116:485–89.

    Article  CAS  Google Scholar 

  12. Tang D, Marangoni AG. Computer simulation of effects of microstructural factors on microscopy fractal dimensions of fat crystal networks. J Am Oil Chem Soc. 2006;83:309–14.

    Article  CAS  Google Scholar 

  13. Tang D, Marangoni AG. Quantitative study on the microstructure of colloidal fat crystal networks and fractal dimensions. Adv Colloid Interface Sci. 2006;128–130:257–65.

    Article  Google Scholar 

  14. Haighton AJ. Measurement of the hardness of margarines and fats with the cone penetrometer. J Am Oil Chem Soc. 1959;36:345–8.

    Article  CAS  Google Scholar 

  15. Marangoni AG. Elasticity of high-volume-fraction aggregate networks: a thermodynamic approach. Phys Rev B. 2000;62:13951–55.

    Article  CAS  Google Scholar 

  16. Marangoni AG, Rogers MA. Structural basis for the yield stress in plastic disperse systems. Appl Phys Lett. 2003;82(19):3239–41.

    Article  CAS  Google Scholar 

  17. deMan JM. Consistency of fats: a review. J Am Oil Chem Soc. 1983;60:82–7.

    Google Scholar 

  18. Narine SS, Marangoni AG. Elastic modulus as an indicator of macroscopic hardness of fat crystal networks. Lebensm-Wiss u-Technol. 2001;34:33–40.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro G. Marangoni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lam, R., Rogers, M.A. & Marangoni, A.G. Thermo-mechanical method for the determination of the fractal dimension of fat crystal networks. J Therm Anal Calorim 98, 7–12 (2009). https://doi.org/10.1007/s10973-009-0271-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0271-5

Keywords

Navigation