Skip to main content
Log in

Design of liposomes containing photopolymerizable phospholipids for triggered release of contents

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

We describe a novel class of light-triggerable liposomes prepared from a photo-polymerizable phospholipid DC8,9PC (1,2-bis (tricosa-10,12-diynoyl)-sn-glycero-3-phosphocholine) and DPPC (1,2-Dipalmitoyl-sn-Glycero-3-Phosphocholine). Exposure to UV (254 nm) radiation for 0–45 min at 25 °C resulted in photo-polymerization of DC8,9PC in these liposomes and the release of an encapsulated fluorescent dye (calcein). Kinetics and extents of calcein release correlated with mol% of DC8,9PC in the liposomes. Photopolymerization and calcein release occurred only from DPPC/DC8,9PC but not from Egg PC/DC8,9PC liposomes. Our data indicate that phase separation and packing of polymerizable lipids in the liposome bilayer are major determinants of photo-activation and triggered contents release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

DNPC (09:0 PC):

1,2-Dinonanoyl-sn-glycero-3-phosphocholine

DMPC (14:0 PC):

1,2-Dimyristoyl-sn-glycero-3-phosphocholine

DPPC (16:0 PC):

1,2-Dipalmitoyl-sn-glycero-3-phosphocholine

Egg PC:

l-α-Phosphatidylcholine (Egg, Chicken)

C23:0 PC:

1,2-Ditricosanoyl-sn-glycero-3-phosphocholine

C22:1 PC (cis):

1,2-Dierucoyl-sn-glycero-3-phosphocholine

DC8,9PC:

(1,2 bis (tricosa-10, 12-diynoyl)-sn-glycero-3-phosphocholine)

DSPE-PEG2000 (18:0 PEG2 PE):

1,2-Distearoyl-sn-glycero-3 phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (ammonium salt)

HEPES buffer:

10 mM HEPES, 140 mM NaCl (pH 7.5)

PBS:

2.66 mM KCl, 1.47 mM KH2PO4, 138 mM NaCl, 8.06 mM Na2HPO4·7H2O (pH 7.1)

References

  1. Shimshic EJ, Mcconnell HM. Lateral phase separations in binary-mixtures of cholesterol and phospholipids. Biochem Biophys Res Commun. 1973;53(2):446–51.

    Article  Google Scholar 

  2. Shimshic EJ, Mcconnell HM. Lateral phase separation in phospholipid membranes. Biochemistry. 1973;12(12):2351–60.

    Article  Google Scholar 

  3. Yatvin MB, Weinstein JN, Dennis WH, Blumenthal R. Design of liposomes for enhanced local release of drugs by hyperthermia. Science. 1978;202(4374):1290–3.

    Article  CAS  Google Scholar 

  4. Regen SL, Singh A, Oehme G, Singh M. Polymerized phosphatidyl choline vesicles. Stabilized and controllable time-release carriers. Biochem Biophys Res Commun. 1981;101(1):131–6.

    Article  CAS  Google Scholar 

  5. Rhodes DG, Blechner SL, Yager P, Schoen PE. Structure of polymerizable lipid bilayers. I–1, 2-bis(10, 12-tricosadiynoyl)-sn-glycero-3-phosphocholine, a tubule-forming phosphatidylcholine. Chem Phys Lipids. 1988;49(1–2):39–47.

    Article  CAS  Google Scholar 

  6. Singh A. An efficient synthesis of phosphatidylcholines. J Lipid Res. 1990;31(8):1522–5.

    CAS  Google Scholar 

  7. Fu FN, Singh BR. Calcein permeability of liposomes mediated by type A botulinum neurotoxin and its light and heavy chains. J Protein Chem. 1999;18(6):701–7.

    Article  CAS  Google Scholar 

  8. Puri A, Kramer-Marek G, Campbell-Massa R, et al. HER2-specific affibody-conjugated thermosensitive liposomes (Affisomes) for improved delivery of anticancer agents. J Liposome Res. 2008;18(4):293–307.

    Article  CAS  Google Scholar 

  9. Dejaeger N, Demeyere H, Finsy R, et al. Particle sizing by photon-correlation spectroscopy.1. Monodisperse lattices—influence of scattering angle and concentration of dispersed material. Part Part Syst Charact. 1991;8(3):179–86.

    Article  CAS  Google Scholar 

  10. Stanish I, Singh A. Highly stable vesicles composed of a new chain-terminus acetylenic photopolymeric phospholipid. Chem Phys Lipids. 2001;112(2):99–108.

    Article  CAS  Google Scholar 

  11. Markowitz MA, Singh A. Microstructure formation properties of 1, 2-bis(15-thia-pentacosa-10, 12-diynoyl)-sn-3-phosphocholine: an acyl chain modified diacetylenic phospholipid. Chem Phys Lipids. 1996;84(1):65–74.

    Article  CAS  Google Scholar 

  12. Pappalardo M, Milardi D, Grasso D, La Rosa C. Phase behaviour of polymer-grafted DPPC membranes for drug delivery systems design. J Therm Anal Calorim. 2005;80(2):413–8.

    Article  CAS  Google Scholar 

  13. Pentak D, Kowski WWS, Sulkowska A. Calorimetric and EPR studies of the thermotropic phase behavior of phospholipid membranes. J Therm Anal Calorim. 2008;93(2):471–7.

    Article  CAS  Google Scholar 

  14. Rhodes DG, Singh A. Structure of polymerizable lipid bilayers IV. Mixtures of long chain diacetylenic and short chain saturated phosphatidylcholines and analogous asymmetric isomers. Chem Phys Lipids. 1991;59(3):215–24.

    Article  CAS  Google Scholar 

  15. Rhodes DG, Hui SW, Xu YH, Byun HS, Singh M, Bittman R. Structure of polymerizable lipid bilayers VII: lateral organization of diacetylenic phosphatidylcholines with short proximal acyl chains. Biochim Biophys Acta. 1994;1215(3):237–44.

    Google Scholar 

  16. Gabizon A, Martin F. Polyethylene glycol-coated (pegylated) liposomal doxorubicin. Rationale for use in solid tumours. Drugs. 1997;54(Suppl 4):15–21.

    Article  CAS  Google Scholar 

  17. Hayward JA, Levine DM, Neufeld L, Simon SR, Johnston DS, Chapman D. Polymerized liposomes as stable oxygen-carriers. FEBS Lett. 1985;187(2):261–6.

    Article  CAS  Google Scholar 

  18. Johnston DS, McLean LR, Whittam MA, Clark AD, Chapman D. Spectra and physical properties of liposomes and monolayers of polymerizable phospholipids containing diacetylene groups in one or both acyl chains. Biochemistry. 1983;22(13):3194–202.

    Article  CAS  Google Scholar 

  19. Singh A, Wong EM, Schnur JM. Toward the rational control of nanoscale structures using chiral self-assembly: diacetylenic phosphocholines. Langmuir. 2003;19(5):1888–98.

    Article  CAS  Google Scholar 

  20. Markowitz MA, Singh A, Chang EL. Formation and properties of a network gel formed from mixtures of diacetylenic and short-chain phosphocholine lipids. Biochem Biophys Res Commun. 1994;203(1):296–305.

    Article  CAS  Google Scholar 

  21. Johnston DS, Sanghera S, Pons M, Chapman D. Phospholipid polymers—synthesis and spectral characteristics. Biochim Biophys Acta. 1980;602(1):57–69.

    Article  CAS  Google Scholar 

  22. Hupfer B, Ringsdorf H, Schupp H. Polyreactions in oriented systems. 21 Polymeric phospholipid monolayers. Macromol Chem Phys 1981;182(1):247–53.

    Article  CAS  Google Scholar 

  23. Hupfer B, Ringsdorf H, Schupp H. Liposomes from polymerizable phospholipids. Chem Phys Lipids. 1983;33(4):355–74.

    Article  CAS  Google Scholar 

  24. Burke TG, Rudolph AS, Price RR, et al. Differential scanning calorimetric study of the thermotropic phase behavior of a polymerizable, tubule-forming lipid. Chem Phys Lipids. 1988;48(3–4):215–30.

    Article  CAS  Google Scholar 

  25. Leaver J, Alonso A, Durrani AA, Chapman D. The physical-properties and photo-polymerization of diacetylene-containing phospholipid liposomes. Biochim Biophys Acta. 1983;732(1):210–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research and NCI Alliance for Nanotechnology (Piotr Grodzinski). We would like to thank Dr. Julie M. Belanger for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anu Puri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yavlovich, A., Singh, A., Tarasov, S. et al. Design of liposomes containing photopolymerizable phospholipids for triggered release of contents. J Therm Anal Calorim 98, 97–104 (2009). https://doi.org/10.1007/s10973-009-0228-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0228-8

Keywords

Navigation