Skip to main content
Log in

Crystallisation of triacylglycerols in nanoparticles

Effect of dispersion and polar lipids

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The crystallisation properties of a mixture of triacylglycerols (TG), cocoa butter (CB) 75%/miglyol 25%, were investigated on cooling at 0.5 °C/min using differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The influence of (i) the dispersion of TG within nanoparticles stabilised by proteins, and of (ii) the presence of polar lipids were characterised. In bulk, crystallisation of TG successively occurred with a α 2L (49.3 Å) structure, then the formation of longitudinal stackings of 44.5 and 34.5 Å of β′ form was interpreted as co-crystallisation of TG from CB and miglyol. The dispersion of TG in nanoparticles of about 400 nm induced a higher supercooling and changed their crystallisation properties. The formation of α 49.2 Å and β′ 45 Å structures corresponded to the segregation of TG from CB in solid phases while TG from miglyol remained liquid. Phospholipids with saturated fatty acid chains affected the thermal properties of TG, which demonstrated their localisation at the surface of the nanoparticles. DSC and XRD revealed to be very sensitive and adapted methods to increase the knowledge about the mechanisms of crystallisation in emulsion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Coupland JN. Crystallization in emulsions. Curr Opin Colloid Interface Sci. 2002;7:445–50.

    Article  CAS  Google Scholar 

  2. Rousseau D. Fat crystals and emulsion stability—a review. Food Res Int. 2000;3:3–14.

    Article  Google Scholar 

  3. Muller RH, Mader K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery—a review of the state of the art. Eur J Pharm Biopharm. 2000;50:161–77.

    Article  CAS  Google Scholar 

  4. Unruh T, Bunjes H, Westesen K, Koch MHJ. Investigations on the melting behaviour of triglyceride nanoparticles. Colloid Polym Sci. 2001;279:398–403.

    Article  CAS  Google Scholar 

  5. Bunjes H, Koch MHJ, Westesen K. Effect of particle size on colloidal solid triglycerides. Langmuir. 2000;16:5234–41.

    Article  CAS  Google Scholar 

  6. Heurtault B, Saulnier P, Pech B, Proust JE, Benoit JP. Physico-chemical stability of colloidal lipid particles. Biomaterials. 2003;24:4283–300.

    Article  CAS  Google Scholar 

  7. Muller RH, Radtke M, Wissing SA. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Deliv Rev. 2002;54:131–55.

    Article  Google Scholar 

  8. Lopez C, Briard-Bion V, Camier B, Gassi J-Y. Milk fat thermal properties and solid fat content in Emmental cheese: a differential scanning calorimetry study. J Dairy Sci. 2006;89:2894–910.

    Article  CAS  Google Scholar 

  9. McClements DJ, Dickinson E, Dungan SR, Kinsella JE, Ma JG, Povey MJW. Effect of emulsifier type on the crystallization kinetics of oil-in-water emulsions containing a mixture of solid and liquid droplets. J Colloid Interface Sci. 1993;160:293–7.

    Article  CAS  Google Scholar 

  10. Dickinson E, Kruizenga F-J, Povey MJW, van der Molen M. Crystallization in oil-in-water emulsions containing liquid and solid droplet. Colloids Surf A. 1993;81:273–9.

    Article  CAS  Google Scholar 

  11. Skoda W, van den Tempel M. Crystallization of emulsified triglycerides. J Colloid Sci. 1963;16:568–84.

    Article  Google Scholar 

  12. Özilgen S, Simoneau C, German JB, McCarthy MJ, Reid DS. Crystallization kinetics of emulsified triglycerides. J Sci Food Agric. 1993;61:101–8.

    Article  Google Scholar 

  13. Lopez C, Bourgaux C, Lesieur P, Bernadou S, Keller G, Ollivon M. Thermal and structural behavior of milk fat: 3. Influence of cream cooling rate and droplet size. J Colloid Interface Sci. 2002;254:64–78.

    CAS  Google Scholar 

  14. Lopez C, Karray N, Lesieur P, Ollivon M. Crystallisation and melting properties of dromedary milk fat globules studied by X-ray diffraction and differential scanning calorimetry. Comparison with anhydrous dromedary milk fat. Eur J Lipid Sci Technol. 2005;107:673–83.

    Article  CAS  Google Scholar 

  15. Ben Amara-Dali W, Lopez C, Lesieur P, Ollivon M. Crystallization properties and polymorphism of triacylglycerols in goat's milk fat globules. J Agric Food Chem. 2008;56:4511–22.

    Article  CAS  Google Scholar 

  16. Lopez C, Lesieur P, Keller G, Ollivon M. Thermal and structural behavior of milk fat: 1. Unstable species of cream. J Colloid Interface Sci. 2000;229:62–71.

    Article  CAS  Google Scholar 

  17. Lopez C, Lesieur P, Bourgaux C, Keller G, Ollivon M. Thermal and structural behavior of milk fat: 2. Crystalline forms obtained by slow cooling of cream. J Colloid Interface Sci. 2001;240: 50–61.

    Article  CAS  Google Scholar 

  18. Lopez C, Bourgaux C, Lesieur P, Ollivon M. Crystalline structures formed in cream and anhydrous milk fat at 4 °C. Lait. 2002;82:317–35.

    Article  CAS  Google Scholar 

  19. Michalski M-C, Ollivon M, Briard V, Leconte N, Lopez C. Native fat globules of different sizes selected from raw milk: thermal and structural behavior. Chem Phys Lipids. 2004;132:247–61.

    Article  CAS  Google Scholar 

  20. Lopez C. Contribution à l’étude de la cristallisation des triacylglycerols: application aux emulsions laitières. PhD thesis Univ. Paris VI (2001).

  21. Lopez C, Maillard M-B, Briard-Bion V, Camier B, Hannon J. Lipolysis during ripening of Emmental cheese considering organization of fat and preferential localization of bacteria. J Agric Food Chem. 2006;54:5855–67.

    Article  CAS  Google Scholar 

  22. Lopez C, Riaublanc A, Lesieur P, Bourgaux C, Keller G, Ollivon M. Definition of a model fat for crystallization-in-emulsion studies. J Am Oil Chem Soc. 2001;78:1233–44.

    Article  CAS  Google Scholar 

  23. Wille RL, Lutton ES. Polymorphism of cocoa butter. J Am Oil Chem Soc. 1966;43:491–6.

    Article  CAS  Google Scholar 

  24. Van Malssen K, Peschar R, Schank H. Real-time X-ray powder diffraction investigations on cocoa butter. I. Temperature-dependent crystallization behavior. J Am Oil Chem Soc. 1996;73:1209–15.

    Article  Google Scholar 

  25. Loisel C, Keller G, Lecq G, Bourgaux C, Ollivon M. Phase transition and polymorphism of cocoa butter. J Am Oil Chem Soc. 1998;75:425–39.

    Article  CAS  Google Scholar 

  26. Small DM. In: Handbook of lipid research. The physical chemistry of lipids. From alkanes to phospholipids. New York: Plenum Press; 1986. p. 512.

  27. Lopez C, Bourgaux C, Lesieur P, Ollivon M. Coupling of time-resolved synchrotron X-ray diffraction and DSC to elucidate the crystallisation properties and polymorphism of triglycerides in milk fat globules. Lait. 2007;87:459–80.

    Article  CAS  Google Scholar 

  28. Ollivon M, Keller G, Bourgaux C, Kalnin D, Villeneuve P, Lesieur P. DSC and high resolution X-ray diffraction coupling. J Thermal Anal Calorim. 2006;85:219–24.

    Article  CAS  Google Scholar 

  29. Davis TR, Dimick PS. Lipid composition of high-melting seed crystals formed during cocoa butter solidification. J Am Oil Chem Soc. 1989;66:1494–8.

    Article  CAS  Google Scholar 

  30. Grabielle-Madelmont C, Perron R. Calorimetric studies on phospholipid-water systems. I. DL-dipalmitoylphosphatidylcholine (DPPC)-water system. J Colloid Interface Sci. 1983;95:471.

    Article  CAS  Google Scholar 

  31. Guinier A, In: Théorie et technique de la radiocristallographie, 3éme éd., Paris: Dunod; 1964.

  32. Awad T, Sato K. Acceleration of crystallisation of palm kernel oil in oil-in-water emulsion by hydrophobic emulsifier additives. Colloids Surf B. 2002;25:45–53.

    Article  CAS  Google Scholar 

  33. Awad T, Sato K. Effects of hydrophobic emulsifier additives on crystallization behavior of palm mid fraction in oil-in water emulsion. J Am Oil Chem Soc. 2001;78:837–42.

    Article  CAS  Google Scholar 

  34. Kalnin D, Schafer O, Amenitsch H, Ollivon M. Fat crystallization in emulsion: influence of emulsifier. Cryst Growth Des 2004;4:1283–93.

    Article  CAS  Google Scholar 

  35. Dahim M, Gustafsson J, Puisieux F, Ollivon M. Solubilization of phospholipid: triacylglycerol aggregates by non-ionic surfactants. Chem Phys Lipids. 1998;97:1–14.

    Article  CAS  Google Scholar 

  36. Raffournier C, Ollivon M, Couvreur P, Dubernet C. Solubility of triacylglycerols or stearylamine in phospholipid vesicles. Prog Colloid Polym Sci. 2004;126:6–13.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank ARILAIT Recherches (French Dairy Board; Paris, France), especially the members of the steering committee, and ANRT (Association Nationale pour la Recherche Technique; Paris, France) for supporting this research. A. Riaublanc (INRA-BIA, Nantes) is acknowledged for his help in the manufacture of emulsions. P. Lesieur (LURE, Orsay) is acknowledged for supervising the synchrotron radiation XRD experiments on the D22 beam line. C. Lopez warmly acknowledges the French Association for Calorimetry and Thermal Analysis (AFCAT) for receiving the AFCAT-Setaram award in June 2008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Lopez.

Additional information

This paper is dedicated to Michel Ollivon, who passed away on June 16th 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lopez, C., Ollivon, M. Crystallisation of triacylglycerols in nanoparticles. J Therm Anal Calorim 98, 29–37 (2009). https://doi.org/10.1007/s10973-009-0183-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0183-4

Keywords

Navigation